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Summary. It is shown that the theory of networks has a natural multidimensional
extension through n-ary relations with n > 2. An ordered set of vertices under a
general n-ary relation is defined to be a simplex, or a hypersimplex when the defin-
ing n-ary relation is made explicit. This leads to a theory of multilevel systems for
any number of levels in which the structure of the generalised networks is consid-
ered to be a relatively static backcloth supporting relatively dynamic patterns of
numbers called the system traffic. This enables the exploration of multilevel coupled
dynamics, and the evolution of multilevel systems. It is suggested that the struc-
tures presented are necessary to understand the dynamics of complex multilevel
systems. However there are many open questions, and some of these are presented
for consideration by the network community.

Keywords n-ary relations · graphs · hypergraphs · networks · simplicial com-
plexes · Q-analysis · q-percolation · multiplex networks · hypernetworks · mul-
tilevel systems ·

1 Introduction

It is now becoming more widely accepted that there is a need to embrace n-
ary relations in network science [17]. This paper presents a condensed account
of a family of structures able to represent n-ary relations, and the algebraic
theory of multilevel systems they support. Examples are given of structures
with n > 2 vertices and the property that removing a vertex destroys the rela-
tional structure. Although multidimensional network structures are necessary
to understand the dynamics of complex multilevel systems, there are many
open questions. These are set out in the concluding section.

? Supported by the UK Home Office through the Open University Police Learning
and Research Project
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Fig. 1. The natural family of network structures embraces n-ary relations

It will be assumed that the readers is familiar with graphs and networks.
Multilayer and multiplex networks provide a formalism for the analysis of
networks defined by many different relations. A comprehensive account of
multilayer and multiplex networks is given by Boccaletti et al. in [10].

In conventional network theory the notation 〈v, v′〉 does not discriminate
between the defining relations. To do this an extra symbol is required. For
example, let V represents a set of people, R1 the relation ‘is line managed
by’ and R2 the relation ‘plays golf with’. Then v and v′ may satisfy both
relations. Let the notation 〈v, v′;R1〉 means v′ is the boss of v. This is different
to 〈v, v′;R2〉 meaning that v plays golf with v′. This notation has the desirable
feature that it naturally allows the definition of algebraic operations on the
relations such as 〈v, v′;R1 ∧ R2〉 which combines the relations R1 and R2 to
form composite relations such as (R1∧R2) meaning ‘plays golf with the boss’.

2 Hypergraphs and the Galois Lattice

There are many of instances n-ary relations between more than two vertices.
For example, consider four people playing bridge. This is a 4-ary relation.
In general n things are related by an n-ary relation if it ceases to hold on
removing any them. For example, if one person leaves the bridge game, the
game no longer continues normally. The structures at the top of Figure 1
generalise the structures at the bottom by allowing relations between any
number of vertices.

The French mathematician Claude Berge made an early attempt to gen-
eralise relational structure to many vertices through his definition of hyper-
graphs developed in the nineteen sixties.

Let X = {x1, x2, ..., xn} be a finite set. A hypergraph on X is a family H =
(E1, E2, ..., Em) of subsets of X such that

(1) Ei 6= ∅ (i = 1, 2, ...,m)

(2)
⋃m

i=1 = X.
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The elements x1, x2, ..., xm are called vertices and the sets E1, E2, ..., Em are
the edges of the hypergraph [8][9].

Let R be a relation between sets A and B. Let aR b mean that a is R-
related to b where a ∈ A and b ∈ B. R(a) be the set of all b ∈ B that are
R-related to a, R(a) = {b | aR b}. Then HA(B,R) = {R(a) | for all a ∈ A} is
a hypergraph. Similarly, let R(b) = {a | aR b}. Then HB(A,R) = {R(b) | for
all b ∈ B} is a also hypergraph.

Given the hypergraph HA(B,R), let HA(B,R) be all the sets in HA(B,R)
together with all their intersections. Let HA(B,R) be called a Galois hyper-
graph. Similarly, let HB(A,R) be all the sets in HB(A,R) together with all
their intersections. ThenHA(B,R) andHB(A,R) are dual Galois hypergraphs.

Proposition The sets in the dual Galois hypergraphsHA(B,R) andHB(A,R)
are in one-to-one correspondence. This is called the Galois connection between
the dual hypergraphs.

A proof of this proposition can be found in [18]. The intuition behind the
proposition is that there are paired maximal subsets A′ ↔ B′ where every
member of A′ ⊆ A is R-related to every member of B′ ⊆ B.

Proposition There is an order relation on the set of Galois pairs with an
associated Galois Lattice

Let A′ ↔ B′ and A′′ ↔ B′′ be Galois pairs. Then A′ ⊆ A′′ if and only if
B′ ⊇ B′′. Let . be defined as A′ ↔ B′ . A′′ ↔ B′′ if A′ ⊆ A′′. Then .
is an order relation with an associated lattice structure. This is called the
Galois Lattice for the relation R between A and B. More details of the Galois
connection and Galois Lattice can be found in [13][14][16][18].

3 Simplicial Complexes and Q-analysis

Hypergraphs have the great advantage that they are simple set-theoretic struc-
tures and this makes it easy to prove the existence of the Galois connection
and Galois Lattice. However set theory is too weak for most applications be-
cause the elements are not ordered. For example, {R, E, P, A, I, R} = {R, A,

P, I, E, R} so the words ‘repair’ and ‘rapier’ cannot be discriminated by the
sets of their letters - the order of the letters is also required.

At the same time that Berge was developing his theory of hypergraphs,
the British mathematician Ron Atkin was developing his theory of Q-analysis
based on simplicial complexes and algebraic topology. [1][6][2][3][3][4][5].

Let V be a set of elements called vertices. An abstract p-dimensional sim-
plex 〈x0, x1, ..., xp〉 is an ordered set of p+1 vertices. A simplex 〈x′0, x′1, ..., x′q〉
is a q-dimensional face of the simplex 〈x0, x1, ..., xp〉 iff {x′0, x′1, ..., x′q} ⊆
{x0, x1, ..., xp}. A set of simplices is called a simplicial family. A set of sim-
plices with all its faces is called a simplicial complex.
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In algebraic topology it is common to use the symbol σ to represent sim-
plices, and this convention will be used here. Simplices have a geometric real-
isation as p-dimensional polyhedra (Fig. 2), as shown in Figure 2.

(a) line (b) triangle (c) tetrahedron (d) 5-hedron

conversation
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1-dimensional 2-dimensional 3-dimensional 4-dimensional

cello
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d
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Fig. 2. Simplices can represent relations between two or more things

Two simplices are q-near if they share a q-dimensional face. Two simplices
are q-connected if there is a chain of pairwise q-near simplices between them.
The tetrahedra σ and σ′ are 1-near in Figure 3(a) because they share a 1-
dimensional face. In Figure 3(b) σ1 and σ4 are 1-connected, since σ1 is 1-near
σ2, σ2 is 1-near σ3, and σ3 is 1-near σ4.

A Q-analysis determines classes of q-connected components, sets of sim-
plices that are all q-connected. An early application of Q-analysis studied
land uses in Colchester [6].

σ σ′

σ1 σ2 σ3 σ4

(a) σ and σ′ are 1-near (b) σ1 and σ4 are 1-connected
Fig. 3. q-connected polyhedra

4 Backcloth, traffic and multidimensional percolation

The vertices and edges of networks often have numbers associated with them.
For example in a social network the vertices may be associated with the
amount of money a person has and the edges may be associated with how
much money passes between pairs of people. In electrical networks the ver-
tices have voltage associated with them and the edges have current. Although
the network’s voltages and currents may change, the network itself does not.
Similarly in a road network the daily traffic flows may vary but usually the
network infrastructure does not. The same holds for simplicial complexes when
there are patterns of numbers across the vertices and the simplices. The num-
bers may change when the underlying simplicial complex does not.
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Atkin suggested that the relatively unchanging network or simplicial com-
plex structure be called a backcloth and that the numbers be called the traffic
of activity on the backcloth. As an example, the airline network acts as a back-
cloth to the traffic of airline passengers. The term backcloth comes from the
scenery painted on large canvas sheets used in theatres as a static backdrop
behind the actors.

Atkin first used simplicial complexes to characterise a wide variety of phe-
nomena in physics by his Cocycle Law that the space-time backcloth sup-
porting many physical phenomena has no holes. His conceptual leap “from
cohomology in physics to q-connectivity in social science” was published in
1972 [2].

Networks are excellent for representing and calculating the dynamics of
flows, including electricity, fluids, vehicles and sentiments. Simplicial com-
plexes are multidimensional networks and they too can carry equally diverse
traffic flows. Generally the q-connectivity of the underlying backcloth con-
straints the dynamics of the flows. This has been called q-transmission and
has been described as a multidimensional analogue analogue to percolation in
networks [16].

5 Hypernetworks

Although simplicial complex are a step forward in representing n-ary rela-
tions they too have their limitations, as illustrated in Figure 4. Here the lines
`1, ..., `16 are arranged in a circle by the relation R1. The resulting structure
〈`1, ..., `16;R1〉 has the emergent property that most people see a white disk at
the centre of the lines, the so-called sun illusion. Figure 4(b) shows the same
set of lines assembled under a different relation, R2. Now there is no disk but
a rectangle shape emerges. This example illustrates that the same ordered set
of elements can be the subject of more than one relation, and that the simplex
notation 〈`1, ..., `16〉 cannot discriminate these very different cases.

`13
`14 `12

`15 `11

`16 `10

`1 `9

`2 `8

`3 `7

`4 `6
`5

��

@@

@@

��

��
XX

XX
��

�
�

C
C

C
C

�
�

(a) The sun illusion
σ1 = 〈`1, ..., `16;R1〉

(b) the rectangle illusion
σ2 = 〈`1, ..., `16;R2〉

Fig. 4. The lines `1, ..., `16 organised by two different relations, R1 and R2

In order to do this another symbol is necessary to represent the rela-
tion. We write R1 : 〈`1, ..., `16〉 → 〈`1, ..., `16;R1〉 and R2 : 〈`1, ..., `16〉 →
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〈`1, ..., `16;R2〉. Let σ1 represent the sun configuration and σ2 represent the
rectangle configuration. Then σ1 and σ2 are examples of relational simplices,
or hypersimplices. Now the notation enables σ1 to be discriminated from σ2,
since σ1 6= σ2.

H C
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C

H

H

O H

(a) n-propyl alcohol

H C

H

H

C

O

H

H

C

H

H

H

(b) isopropyl alcohol

H C

H

H

C

H

H

O

H

H

C H

(c) methyl-ethyl-ether

Fig. 5. Chemical isomers as relational simplices

As another example, propanol assembles three carbon atoms with eight
hydrogen atoms and one oxygen atom, written as C3H8O or C3H7OH. Figure
5 shows the atoms of propanol arranged in a variety of ways. The first two
show the isomers n-propyl alcohol and isopropyl alcohol. The oxygen atom
is attached to an end carbon in the first isomer and to the centre carbon in
the second, but the C-O-H hydroxyl group substructure is common to both.
The rightmost isomer of C3H8O, methoxyethane, has the oxygen atom con-
nected to two carbon atoms and there is no C-O-H substructure. This makes
it an ether, methyl-ethyl-ether, rather than an alcohol. Thus the relational
simplices of the isomers have the same vertices, but the assembly relations
are different. n-propyl alcohol and isopropyl alcohol share the hydroxyl group
substructure C-O-H and are similar, but methyl-ethyl-ether does not and has
different properties. Thus

〈 C, C, C, H, H, H, H, H, H, H, H, O ; R n−propylalcohol〉 6=
〈 C, C, C, H, H, H, H, H, H, H, H, O ; R isopropylalcohol〉 6=
〈 C, C, C, H, H, H, H, H, H, H, H, O ; Rmethyl−ethyl−ether〉

In general a hypernetwork is defined to be any collection of hypersimplices.
This definition is deliberately undemanding, so that almost anything can be
a hypersimplex, and any collection of hypersimplices can be a hypernetwork.
Hypersimplices can act as backcloth structure carrying a traffic of numbers
on their vertices and on their faces.

6 The vertex removal test for n-ary relations

The essential feature of a polyhedron is that it ceases to exist if any of the
vertices are removed. For example, Figure 6(a) shows a cyclist represented as
the combination 〈rider, bicycle; Rriding〉. Remove either the man or the bicycle
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and what is left ceases to be a cyclist. In Figure 6(a), remove any vertex from
〈gin, tonic, ice, lemon; Rmixed〉 and it ceases to be the perfect gin and tonic.
Figure 6(c) shows what poker players call a Royal Flush, the highest hand.
Remove any of the cards and it ceases to be a Royal Flush.

Generalising edges to polyhedra allows a distinction to be made between
the parts of things represented by vertices, and wholes represented by hyper-
simplices. Using this test it is easy to find many examples of n-ary relations,
e.g. four bridge players form a hypersimplex - remove one and the game col-
lapses; and a car and its wheels are 5-ary related - without any of them it
won’t work; a path with n edges in a network forms a hypersimplex - remove
an edge and the path ceases to exist;

〈bicycle〉 〈rider〉

t t
cyclist = 〈bicycle, rider〉

(a) Remove a vertex and the cyclist
simplex ceases to exist

(b) Remove a vertex and the perfect
gin and tonic ceases to exist

%
%
%%

PPPPPP

�
�
��

aa
aa

A
A
A
A
AA

A
A
A
A
AA

��
��

��s s
s s

lemon

ice

tonic

gin

(c) The Royal Flush hypersimplex 〈 A♥, K♥, Q♥, J♥, 10♥; RRoyalFlush〉

Fig. 6. Remove a vertex and the simplex ceases to exist.

7 Network paths as hypersimplices

Through the idea of paths, n-ary relations have been implicit in network
science since the earliest days. A path of length n, 〈`1, `2, ...`n; Rpath〉, is an
ordered collection of network edges, also called links denoted `i (Fig. 7). Paths
in networks can be considered to be hypersimplices - remove a link and it
ceases to be a path between the original origin and destination nodes.

Paths in networks have a connectivity structure which is yet to be explored.
For example, σAB and σCB share a 5-dimensional face (they have six links in
common) and are 5-near. Similarly, σCB is 5-near σCD, σCD is 5-near σED and
σED is 5-near σEF . Thus σAB and σEF are 5-connected through the chain of
connection σAB − σCB − σCD − σED − σEF , even though they share no links.
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σAB = 〈`1, `2, `3, `4, `5, `6, `7, `8, `9, `10, `11, `12, `13;Rpath〉
σCB = 〈`15, `16, `17, `18, `19, `20, `14, `8, `9, `10, `11, `12, `13;Rpath〉
σCD = 〈`15, `16, `17, `18, `19, `20, `21, `22, `23, `24, `25, `26, `27;Rpath〉
σED = 〈`29, `30, `31, `32, `33, `34, `35, `36, `28, `24, `25, `26, `27;Rpath〉
σEF = 〈`29, `30, `31, `32, `33, `34, `35, `36, `37, `38, `39, `40, `41;Rpath〉

Fig. 7. Paths in networks are hypersimplices with multidimensional connectivity

The link-route connectivity structure has been investigated for road traffic
systems [15] but has not been used to investigate networks more generally.

8 Hypernetworks and multilevel structure

Hypersimplices enable the definition of multilevel part-whole structures, e.g.
four blocks assembled by the 4-ary relation R to form an arch in Figure 8.

6
R

�@

�@

gap

-

Level N+1

Level N

6
6
R

whole

parts

Level N+1

Level N

6

Fig. 8. The fundamental part-whole diagram of multilevel aggregation

Here the whole has the emergent property of a gap not possessed by any of its
parts. If the parts exist in the system at an arbitrary Level N then the whole
exists at a higher level, here shown as Level N+1. Thus assembly relations
provide an immutable upwards arrow for defining multilevel structure.
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taxonomic
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part-whole
aggregation

6

Level N

Fig. 9. part-whole and taxonomic aggregation

Part-whole aggregations are interleaved with taxonomic aggregations. In Fig-
ure 9 the aggregation between Level N and Level N+1 combines graphical
parts to form faces. The aggregation between Level N+1 and Level N+2 es-
tablishes classes of faces in a taxonomy. Such aggregations depend on the
purpose of the taxonomy, e.g. there is no class of ‘frowny’ faces because, for
the purpose here, it is not required. Note that part-whole aggregations require
all the parts. In contrast taxonomic aggregations require just one example to
aggregate. For example, the round smiley face is sufficient for there to be a
smiley face, irrespective of whether or not there is a square smiley face.

9 The Multilevel Fragment-Recombine Operator

When dealing with multilevel systems it would be useful to have a single sym-
bol to represent the very complicated multilevel cone structures illustrated in
Figure 10(a). One possibility is to enclose them by triangle. This representa-
tion allows a subsystem to be represented by a triangle within a triangle as
shown in Figure 10(b). Since the intersection of two triangles is also a triangle,
this representation is convenient to denote the intersection of two multilevel
systems, as shown in Figure 10(c).

This representation suggests an exciting new possibility for multilevel com-
plex systems. To be more concrete consider a narrative as a multilevel struc-
ture made of words, phrases, paragraphs and complete stories. Narratives are
very important in policy and very important for the development of a theory
of complex social systems.

For example, Europe is grappling with many narratives associated with
migrants, and these narratives work at the level of the plight of individual
people, through to more aggregate structures such as people traffickers’ boats
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Fig. 10. Multilevel operations on multilevel triangles

to more aggregate structures such as countries and their policies. The narra-
tives include political and economic aspects at many level of aggregation. Let
this multilevel narrative be called NMigration as shown top-left in Figure 11.
Let 4Mi be the state of the narrative at time ti.

4M1 4M2 4M3 4M4

4M5

4U1 4U2 4U3

4U4

4U5

4M5 ?4U5
new
= 4MU0

NMigration

NUnemployment

t1 t2 t3 t4 t5

crash
recombine

Fig. 11. Multilevel fragment-recombine operators

Alongside the strong migration narrative in the UK there are others, e.g.
the unemployment narrative, NUnemployment (Fig. 11). Both these narratives
evolve in time, with information and invention being added or lost. Figure
11 shows these narratives evolving independently until they crash into each
other at time t5. The combinatorial dynamics of such a crash is not well
understood, but it involves parts of the two multilevel systems interacting and
each of the multilevel narratives fragmenting before they recombine to form
new composite narratives, e.g. Nmigrants are taking our jobs. Let the fragment-
recombine operator of multilevel systems, ?, be defined as

? : ( 1, 2) → 1 ? 2

where 1 and 2 are multilevel systems before they crash and 1 ? 2 is
the multilevel system after. This opens up many new questions.
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10 Open Questions in Multidimensional Network Science

Open Question 1: How are the dynamics of systems constrained by the
q-connectivity structure of the backcloth? What are the mechanisms for q-
percolation?

This question concerns the dynamics of system traffic, i.e. the patterns of num-
bers across the vertices and hypersimplices. The numbers on one hypersimplex
can directly influence the numbers on another through their shared face. For
example, consider two routes through a road traffic system. The routes can be
considered to be structured sets of road segments, Ri = 〈s0, s1, ..., sn;Rroute〉.
The more segments that two routes share, the more their traffic will interact,
with the vehicles slowing each down. Thus the more highly connected the
routes, the greater the impact they have on each other.

Open Question 2: What connectivity properties are there between paths in
networks? Can networks be classified by their multidimensional path connec-
tivity structure?

This question arises from considering network paths to be hypersimplices as
suggested in Section 7.

Open Question 3: What are the processes of hypersimplex formation and
disintegration?

This question is a generalised version of the question as to how links form
in networks. One answer to this for networks is the Barabási’s preferential
attachment mechanism [7]. A necessary condition for a hypersimplex to form
is that all its vertices are present. For the vertices to become n-ary related
may require a process in time involving a sequence of other p-ary relations.
For example, for n people to form a well-functioning team involves a process
in which they learn to work together. In this case the process may change the
vertices, e.g. some members of the team may be trained in order to acquire
necessary skills.

Open Question 4: What is the nature of the intra-level and inter-level
backcloth-traffic dynamics of multilevel systems.

This question combines the first and third questions in the context of multi-
level interactions. Bottom-up the traffic or patterns of numbers aggregate
over the multilevel backcloth. In general more aggregate numbers get larger
and more predictable in time. Furthermore, aggregation bottom-up tends to
convert lower level structures into numbers. For example, company taxation
results in a time series of numbers at the national level, where the details of
companies and their activities are not explicit. Similarly there are issues of how
numbers are distributed top-down over multilevel systems. The challenge is to
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understand how bottom-up and top-down dynamics interact across multilevel
systems.

Another aspect of this question concerns the formation of multilevel struc-
ture, and the processes by which top-down decisions enable or require the cre-
ation of lower level structures. For example a company may decide to invest
in a new factory. This requires information traffic to flow across higher man-
agement level resulting in top-down flows of resources to create the lower level
structure. Generally the rationale for this is that the new lower structure will
create new resources that will flow up the structure to enhance the company’s
profits.

When modelling systems it is always the case that some things are in-
cluded and some are left out. This includes deciding that some level is the
lowest necessary to model a multilevel system. The dynamics of a multilevel
system are said to be information complete at Level N if modelling their be-
haviour requires no information from Level N-k for k ≥ 1. Thus Open Question
3 includes how to decide the level at which a system is information complete.
For example, until recently, economic systems were modelled at the meso level
of the ‘representative agent’. Today it is increasing realised that many social
system are information-complete only at the level of individual people. For
example, the behaviour of road traffic system emerges from the decisions of
individual agents and increasing they are modelled at this level by agent-based
simulations using the disaggregate data of synthetic micro populations.

Open Question 5 What new algebraic operations can be defined between
hypersimplices?

The generality of this question is given by the expression

〈x0, ..., xp1 ;R1〉 � 〈y0, ..., yp2 ;R2〉 = 〈z0, ..., zp1,2 ;R1
h? R2〉

where {z0, ..., zp1,2} = {x0, ..., xp1} ? { y0, ..., yp2}. The challenge is to deter-

mine the nature of the operators ? and h? .

This question has its origins in the simple question “what is the intersection
of two hypersimplices?” An obvious but unsatisfactory answer is given by

〈x1, x2, ..., xn;R1〉 ∩ 〈y1, y2, ..., yp′ ;R2〉
?
= 〈z1, z2, ..., zq;R1 ∧R2〉,

where {z1, z2, ..., zq} = {x1, x2, ..., xp} ∩ {y1, y2, ..., yp′}.

The problem here is that R1 is defined on all the vertices x1, x2, ..., xp and R2

is defined on all the vertices y1, y2, ..., yp′ but, as written, their conjunction is
defined on {x1, x2, ..., xp} ∩ {y1, y2, ..., yp′}. Another possibility is to write
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〈x1, x2, ..., xn;R1〉 ∩ 〈y1, y2, ..., yp′ ;R2〉
?
= 〈z1, z2, ..., zq;R1 ∧R2〉,

where {z1, z2, ..., zq} = {x1, x2, ..., xp} ∪ {y1, y2, ..., yp′}.

To investigate this question further consider two multiplex network edges,
〈x1, x2;R〉 and 〈y1, y2;R′〉

〈x1, x2;R〉 ∩ 〈y1, y2;R′〉 def
= ∅ for {x1, y1} ∩ {y1, y2} = ∅
def
= 〈x1, x2;R ∧R′〉 for {x1, y1} ∩ {y1, y2} = {x1, x2}
def
= 〈x1, x2〉 ? 〈y1, y2〉;R h? R′〉 otherwise

Of these, the first and second are not problematic, the former being an empty
intersection and the latter being the conjunction of the relations. But how
should the ? and h? operations be defined?

Suppose 〈x1, x2〉 ? 〈y1, y2〉 = 〈x1, x2〉 ∩ 〈y1, y2〉 = 〈x1〉. This means that

R h? R′ is defined on a single vertex. It is perhaps more promising to suppose
that 〈x1, x2〉 ? 〈y1, y2〉 = 〈x1, x2〉 ∪ 〈y1, y2〉?

Open Question 6 What is the nature of the multilevel fragment-recombine
operator ? : (41,42, ...)→41 ?42 ? ... for multilevel systems.

It may be easiest to answer by thinking ahead to how the ? operation could be
implemented. In practice it is assumed that the multilevel systems are explic-
itly represented in multilevel data structures based on the algebra sketched
in this paper. Then the question becomes how hypersimplices at compatible
levels behave when they crash into each other. Presumably there are various
? and h? operations to deconstruct and recombine the hypersimplices. The
nature of these is a major challenge for multilevel multidimensional network
science.
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