Productive Density and Distribution from an Input-Output Perspective: The Case of Argentina since the 1950s

Ariel L. Wirkierman ${ }^{1}$

${ }^{1}$ Science Policy Research Unit (SPRU), University of Sussex

Input-Output and Multisectoral Analysis: Theory and Applications Open University, Milton Keynes, 16-17 May, 2017

Context and motivation

Context and motivation:
\triangleright Long-run history of the conflictive relationship between trade balance (and BoP) constraints and productive structure ('densidad productiva') in Latin America
\triangleright 'Competitiveness': issue related to relative price and distribution structure of the economy (at least, partially)
\triangleright Argentina since the 1950s: succession of 6 economic regimes
(i) Import-substitution industrialisation (early 10950s)
(ii) Structuralism ('desarrollismo', late 1950s to mid 1970s)
(iii) Economic Liberalisation (late 1970s - early 1980s)
(iv) Debt-crisis inflationary economy (1980s)
(v) Convertibility (1990s)
(vi) Post-Convertibility (2000s)

Main contribution

\triangleright Brody (1970) type of extended Input-Output scheme based on the computation of 'standard prices' (Pasinetti, 1992) - rather than 'standard proportions' (Sraffa, 1960)
\triangleright Compute and analyse the structure of relative prices and distribution implied by a situation of balanced trade (for given quantities), to shed light on the constraints that productive structure pose on distributive possibilities
\triangleright Apply the framework to the case of Argentina from 1950s onwards

Structural expenditure and income accounting (I)

$$
\begin{aligned}
\mathbf{x} & =\mathbf{X e}+\mathbf{f} \\
\mathbf{x}^{T} & =\mathbf{e}^{T} \mathbf{X}+\mathbf{m}^{T}+\mathbf{w}^{T}+\boldsymbol{\pi}^{T} \\
\mathbf{X} & =\mathbf{A} \widehat{\mathbf{x}}=\left[a_{i j} x_{j}\right] \\
\mathbf{w}^{T} & =\mathbf{a}_{w}^{T} \widehat{\mathbf{x}}=\left[a_{w j} x_{j}\right] \\
\mathbf{m}^{T} & =\mathbf{a}_{m}^{T} \widehat{\mathbf{x}}=\left[a_{m j} x_{j}\right] \\
\boldsymbol{\pi}^{T} & =\mathbf{a}_{\pi}^{T}=\left[a_{\pi j} x_{j}\right] \\
\mathbf{f} & =\mathbf{f}_{c w}+\mathbf{f}_{e}+\mathbf{f}_{z} \\
\mathbf{f}_{c w} & =\boldsymbol{\theta}_{c} W, \quad \mathbf{f}_{e}=\boldsymbol{\theta}_{e} M \\
C & =\mathbf{e}^{T} \mathbf{f}_{c}+M_{c} \\
\boldsymbol{\theta}_{c} & =\mathbf{f}_{c} / C, \quad \theta_{c}^{m}=M_{c} / C \\
W & =\mathbf{a}_{w}^{T} \mathbf{X} \\
M & =\mathbf{a}_{m}^{T} \mathbf{x}+\theta_{c}^{m} W+M_{z}
\end{aligned}
$$

(Expenditure)
(Income)
(Intermediate inputs) (Industry wages)
(Intermediate imports)
(Surplus)
(Final demand)
(Wage-consumption \& Exports)
(Agg. final consumption)
(Consumption structure)
(Wage bill)
(Imports)

Structural expenditure and income accounting (II)

Expenditure:

$$
\left[\begin{array}{c}
\mathbf{x} \\
W \\
M
\end{array}\right]=\left[\begin{array}{ccc}
\mathbf{A} & \boldsymbol{\theta}_{c} & \boldsymbol{\theta}_{e} \\
\mathbf{a}_{w}^{T} & 0 & 0 \\
\mathbf{a}_{m}^{T} & \theta_{c}^{m} & 0
\end{array}\right]\left[\begin{array}{c}
\mathbf{x} \\
W \\
M
\end{array}\right]+\left[\begin{array}{c}
\mathbf{f}_{z} \\
0 \\
M_{z}
\end{array}\right]
$$

Income:
$\left[\begin{array}{lll}\mathbf{e}^{T} & 1 & 1\end{array}\right]=\left[\begin{array}{lll}\mathbf{e}^{T} & 1 & 1\end{array}\right]\left[\begin{array}{ccc}\mathbf{A} & \boldsymbol{\theta}_{c} & \boldsymbol{\theta}_{e} \\ \mathbf{a}_{w}^{T} & 0 & 0 \\ \mathbf{a}_{m}^{T} & \theta_{c}^{m} & 0\end{array}\right]+\left[\begin{array}{lll}\mathbf{a}_{\pi}^{T} & 0 & \left(1-\mathbf{e}^{T} \boldsymbol{\theta}_{e}\right)\end{array}\right]$

From structural price accounting to computable prices

Structural accounting:
$\left[\begin{array}{lll}\mathbf{e}^{T} & 1 & 1\end{array}\right]=\left[\begin{array}{lll}\mathbf{e}^{T} & 1 & 1\end{array}\right]\left[\begin{array}{ccc}\mathbf{A} & \boldsymbol{\theta}_{c} & \boldsymbol{\theta}_{e} \\ \mathbf{a}_{w}^{T} & 0 & 0 \\ \mathbf{a}_{m}^{T} & \theta_{c}^{m} & 0\end{array}\right]+\left[\begin{array}{lll}\mathbf{a}_{\pi}^{T} & 0 & \left(1-\mathbf{e}^{T} \boldsymbol{\theta}_{e}\right)\end{array}\right]$
Computable prices:

$$
\begin{aligned}
& {\left[\begin{array}{lll}
\mathbf{p}^{T} & p_{w} & p_{m}
\end{array}\right]=\left[\begin{array}{lll}
\mathbf{p}^{T} & p_{w} & p_{m}
\end{array}\right]\left[\begin{array}{ccc}
\mathbf{A} & \boldsymbol{\theta}_{c} & \boldsymbol{\theta}_{e} \\
\mathbf{a}_{w}^{T} & 0 & 0 \\
\mathbf{a}_{m}^{T} & \theta_{c}^{m} & 0
\end{array}\right]+} \\
& +r\left[\begin{array}{lll}
\mathbf{p}^{T} & p_{w} & p_{m}
\end{array}\right]\left[\begin{array}{lll}
\mathbf{A} & \mathbf{0} & \mathbf{0} \\
\mathbf{a}_{w}^{T} & 0 & 0 \\
\mathbf{a}_{m}^{T} & 0 & 0
\end{array}\right]
\end{aligned}
$$

Computable prices: Interpretation

Developing the partitioned-matrix formulation:

$$
\begin{aligned}
& \mathbf{p}^{T}=(1+r)\left(\mathbf{p}^{T} \mathbf{A}+p_{w} \mathbf{a}_{w}^{T}+p_{m} \mathbf{a}_{m}^{T}\right) \quad \text { (Comm. prices) } \\
& p_{w}=\mathbf{p}^{T} \boldsymbol{\theta}_{c}+p_{m} \theta_{c}^{m} \quad(\text { Wage-labour monetary unit price) }
\end{aligned}
$$

$$
p_{m}=\mathbf{p}^{T} \boldsymbol{\theta}_{e} \quad \text { (Balanced foreign trade import price) }
$$

Computable prices: solution

An eigensystem: $\mathbf{v}^{T} \neq \mathbf{0}^{T}$ such that:

$$
\lambda \mathbf{v}^{T}=\mathbf{v}^{T} \mathbf{M}
$$

Our system is:

$$
\begin{aligned}
& \frac{1}{r}\left[\begin{array}{lll}
\mathbf{p}^{T} & p_{w} & p_{m}
\end{array}\right]= \\
& =\left[\begin{array}{lll}
\mathbf{p}^{T} & p_{w} & p_{m}
\end{array}\right]\left(\left[\begin{array}{ccc}
\mathbf{A} & \mathbf{0} & \mathbf{0} \\
\mathbf{a}_{w}^{T} & 0 & 0 \\
\mathbf{a}_{m}^{T} & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
\mathbf{I}-\mathbf{A} & -\boldsymbol{\theta}_{c} & -\boldsymbol{\theta}_{e} \\
-\mathbf{a}_{w}^{T} & 1 & 0 \\
-\mathbf{a}_{m}^{T} & -\theta_{c}^{m} & 1
\end{array}\right]^{-1}\right)
\end{aligned}
$$

We can compute its solution:

$$
\left(r,\left[\begin{array}{lll}
\mathbf{p}^{T} & p_{w} & p_{m}
\end{array}\right]\right)
$$

Computable prices: normalisation

Sum of all statistical unit-prices:

$$
\left[\begin{array}{lll}
\mathbf{e}^{T} & 1 & 1
\end{array}\right]\left[\begin{array}{l}
\mathbf{e} \\
1 \\
1
\end{array}\right]=\mathbf{e}^{T} \mathbf{e}+1+1=n+2
$$

Then, we want:

$$
\left[\begin{array}{lll}
\mathbf{p}^{T} & p_{w} & p_{m}
\end{array}\right]\left[\begin{array}{l}
\mathbf{e} \\
1 \\
1
\end{array}\right]=\mathbf{p}^{T} \mathbf{e}+p_{w}+p_{m}=n+2
$$

Thereby adopting:

$$
\frac{\mathbf{p}^{T} \mathbf{e}+p_{w}+p_{m}}{n+2}=1
$$

as the normalisation condition for the eigenproblem

Examples in a 2×2 economy

	1	2	C	E	Oth.	x
1	10	5	1	2	1	19
2	5	15	2	4	0	26
m	1	3	1	0	0	
w	2	1				
π	1	2		45		
x	19	26				
$B o T=E-M=6-5=1>0$						
$r=3 /(35+3+4)=0.071$	(mark-up)					
obs.					comp.	surplus
p_{1}	1.000	0.954	0.052			
p_{2}	1.000	0.931	0.076			
p_{w}	1.000	0.986	0.000			
p_{m}	1.000	1.127	-0.200			
r	0.071	0.048				

$B o T$ surplus: $\uparrow p_{m}, \downarrow p_{w}, \downarrow r$

	1	2	C	E	Oth.	x
1	10	5	1	2	1	19
2	5	15	2	4	0	26
m	1	3	1	0	2	
w	2	1				
π	1	2				45
x	19	26				
$=E-M=6-7=-1<0$						

$r=3 /(35+3+4)=0.071$ (mark-up)

	obs.	comp.	surplus
p_{1}	1.000	1.078	0.052
p_{2}	1.000	1.023	0.076
p_{w}	1.000	1.004	0.000
p_{m}	1.000	0.893	0.142
r	0.071	0.089	

$B o T$ deficit: $\downarrow p_{m}, \uparrow p_{w}, \uparrow r$

Dataset characteristics: Argentina (1953-2011)

Table: Input-Output matrices for Argentina since the 1950s

(all matrices in current AR\$, distinguishing between domestically produced and imported commodities)					
Period	Year	Dimension	Source	Prices	GVA disag.
$1950-1958$	1953	23×23	BCRA	Purchaser	Wages \& Salaries
$1959-1965$	1963	23×23	BCRA	Purchaser	Wages \& Salaries
$1966-1974$	1973	56×56	BCRA	Purchaser	Comp. Employees
$1983-1991$	1984	220×220	BID-SP	Producer	-
$1991-2001$	1997	124×124	INDEC	Basic	Comp. Employees
$2002-2007$	2004	95×95	Own est.	Basic	Comp. Employees
$2008-2011$	2011	95×95	Own est.	Basic	Comp. Employees

Argentina's Input-Output matrix: 1953

Cuadro 5

(Mgien de peses argentinoe)

Industry Classification

Industry Classification: 1953, 1973, 1997, 2011		
cod_IP	Description	Label
IP_01	Agriculture	01_AGRIC
IP_02	Animal production	02_ANIM
IP_03	Mining	03_MIN
IP_04	Food processing	04_FOOD
IP_05	Tobacco	05_TOBAC
IP_06	Textiles \& apparel	06_TEXT
IP_07	Leather \& products	07_LEATH
IP_08	Wood \& Forestry Products	08_WOOD
IP_09	Paper products \& publishing	09_PAPER
IP_10	Chemicals	10_CHEM
IP_11	Petrochemical	11_PETRO
IP_12	Rubber \& Plastics	12_RUBPL
IP_13	Mineral products	13_MINPR
IP_14	Metal products	14_METAL
IP_15	Vehicles \& Mech. Mach.	15_MMACH
IP_16	Electrical Machinery	16_EMACH
IP_17	Other manufacturing	17_OMANU
IP_18	Utilities	18_UTIL
IP_19	Construction	19_CONST
IP_20	Transport, Comm. \& Trade	20_TRCOTR
IP_21	Prof. \& Social Services	21_SERV

Computable prices for Argentina (1953-2011)

	IP53			IP73			IP97			IP11		
Industry	obs.	comp.	surplus									
01_AGRIC	1.000	0.703	0.520	1.000	0.653	0.447	1.000	0.674	0.486	1.000	0.737	0.439
02_ANIM	1.000	0.629	0.540	1.000	0.668	0.504	1.000	0.889	0.347	1.000	0.628	0.493
03_MIN	1.000	0.952	0.345	1.000	0.769	0.447	1.000	0.519	0.583	1.000	0.569	0.556
04_FOOD	1.000	1.040	0.179	1.000	1.013	0.122	1.000	1.180	0.162	1.000	1.035	0.175
05_TOBAC	1.000	0.569	0.587	1.000	0.488	0.572	1.000	1.133	0.174	1.000	1.033	0.230
06_TEXT	1.000	1.225	0.220	1.000	1.683	0.098	1.000	1.276	0.229	1.000	1.062	0.319
07_LEATH	1.000	1.218	0.237	1.000	1.071	0.206	1.000	1.386	0.242	1.000	1.280	0.151
08_WOOD	1.000	1.196	0.247	1.000	1.140	0.180	1.000	0.958	0.283	1.000	0.690	0.485
09_PAPER	1.000	1.174	0.249	1.000	1.217	0.150	1.000	1.098	0.240	1.000	1.159	0.226
10_CHEM	1.000	1.063	0.291	1.000	1.001	0.260	1.000	1.052	0.225	1.000	1.119	0.229
11_PETRO	1.000	0.554	0.627	1.000	0.772	0.375	1.000	0.808	0.132	1.000	0.869	0.207
12_RUBPL	1.000	1.154	0.266	1.000	0.924	0.302	1.000	1.090	0.261	1.000	1.218	0.210
13_MINPR	1.000	1.064	0.271	1.000	0.998	0.239	1.000	0.961	0.273	1.000	0.874	0.308
14_METAL	1.000	1.261	0.204	1.000	1.045	0.208	1.000	1.123	0.223	1.000	1.044	0.281
15_MMACH	1.000	1.213	0.222	1.000	1.171	0.188	1.000	1.160	0.202	1.000	1.317	0.120
16_EMACH	1.000	1.150	0.272	1.000	1.139	0.173	1.000	1.153	0.214	1.000	1.137	0.233
17_OMANU	1.000	1.013	0.332	1.000	0.988	0.225	1.000	1.001	0.312	1.000	0.874	0.378
18_UTIL	1.000	1.052	0.286	1.000	1.011	0.265	1.000	0.885	0.282	1.000	0.655	0.445
19_CONST	1.000	1.408	0.105	1.000	1.298	0.105	1.000	0.897	0.396	1.000	0.930	0.289
20_TRCOTR	1.000	0.995	0.308	1.000	0.783	0.448	1.000	0.641	0.476	1.000	0.842	0.372
21_SERV	1.000	0.597	0.593	1.000	0.665	0.535	1.000	0.769	0.411	1.000	0.904	0.315
p_w	1.000	0.946	0.000	1.000	0.950	0.000	1.000	0.747	0.000	1.000	0.865	0.000
p_m	1.000	1.103	-0.198	1.000	1.094	-0.231	1.000	0.737	0.259	1.000	1.022	-0.109
r	0.484	0.511	0.000	0.441	0.479	0.000	0.568	0.672	0.000	0.459	0.511	0.000

References: Obs.: observed in actual data, Comp.: computed. Shaded cell indicates ($\mathrm{M}-\mathrm{X}$)/M
01_AGRIC to 21_SERV industries, p_w: price of a monetary unit of wage labour, p _ m : price of a monetary unit of imports
r : mark-up on circulating capital and labour costs.

Model-implied changes in relative prices

Model-implied changes in income categories

(a) Import-substitution
(1953)
$(M-X) / M=-0.198$
(b) Structuralism
(1973)
$(M-X) / M=-0.231$
(c) Convertibility
(1997)
$(M-X) / M=-0.259$
(d) Post-Convert.
(2011)
$(M-X) / M=-0.109$

