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Abstract 

Recent finance literature highlights the role of technological change in increasing firm specific 

and aggregate stock price volatility (Campbell et al. 2001, Shiller 2000, Pastor and Veronesi 

2005). Yet innovation data is not used in these analyses, leaving the direct relationship 

between innovation and volatility untested. Our aim is to investigate more closely the 

relationship between stock price volatility and innovation using firm level patent citation data. 

The analysis builds on the empirical work by Mazzucato (2002; 2003) where it is found that 

stock price volatility is highest during periods in the industry life-cycle when innovation 

(measured at the industry level) is the most ‘competence-destroying’.  Here we ask whether 

firms which invest more in innovation (more R&D and more patents) and/or which have ‘more 

important’ innovations (patents with more citations) experience more volatility. We focus the 

analysis on firms in the pharmaceutical and biotechnology industries between 1974 and 1999. 

Results suggest that there is a positive and significant relationship between idiosyncratic risk, 

R&D intensity and the various patent related measures.  Preliminary support is also found for 

the ‘rational bubble’ hypothesis linking both the level and volatility of stock prices to 

innovation. 

Key words: Idiosyncratic Risk; Volatility; Technological Change; Industry Life-Cycle. 

JEL Classification G12 (Asset Pricing); 030 (Technological Change). 
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1. Introduction 

In recent years there has been increased attention, by both the economics profession 

and the popular press, on the topic of stock price volatility.  Interest peaked after the ‘New 

Economy’ period when many high-tech stocks that were considered overvalued experienced 

a large drop in their share price.  But still now there persists the idea that the ‘knowledge 

economy’ (less unfashionable a term than the New Economy), has resulted in greater 

volatility, especially of small innovative firms which tend to go public earlier in their life-cycle 

than in previous times.  

Yet, in reality, there has been no trend increase of aggregate stock price volatility 

(Schwert 1989; 2002).  Particular periods have been characterized by high volatility, such as 

the 1970’s and the 1990’s, but the increase has not persisted.  Firm specific volatility has, on 

the other hand, experienced a trend increase over the last 40 years (Campbell et al. 2001).  

Various works have highlighted technological change as one of the key factors responsible 

for this increase in firm specific risk, as well as the periodic increases of aggregate stock 

price volatility.  For example, Shiller’s work (2000) has shown that ‘excess volatility’, i.e. the 

degree to which stock prices are more volatile than underlying fundamentals, is highest in 

periods of technological revolutions when uncertainty is greatest.  Campbell et al. (2001) find 

that firm level idiosyncratic risk, i.e. firm specific volatility (as opposed to industry specific or 

market level), has risen since the 1960’s and claim that this might be due to the effect of new 

technologies, especially those related to the ‘IT’ revolution, as well as the fact that small firms 

tend now to go public earlier in their life-cycle when their future prospects are more 

uncertain.  And Pastor and Veronesi (2004) claim that the reason that high tech firms have 

prices that appear unjustifiably high (at the beginning of a ‘bubble’) is not due to irrationality, 

but due to the effect that new technology has on the uncertainty about a firm’s average future 

profits.  The basic idea behind all these works (reviewed further below) is that innovation, 

especially when ‘radical’, leads to high uncertainty hence more volatility. 

Yet none of these studies actually use innovation data.  Innovation is eluded to (e.g. 

the ‘IT revolution’, the New Economy, radical change) but not measured, especially not at the 

firm or industry level1.  The aim of our paper is to better understand the dynamics of stock 

price volatility by seeing whether we can in fact find evidence that stock price volatility is 

related to firm level innovation.  That is, we do not assume that volatility is a sign of greater 

uncertainty due to underlying innovation but instead empirically test for this very relationship.   

                                                 
1 Of the above cited authors, Shiller (2000) comes closest to considering the impact of technology by looking at 
excess volatility during the course of technological revolutions. 
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The paper builds on our previous work (Mazzucato and Semmler 1999; Mazzucato 

2002; 2003) where it is found that excess volatility and idiosyncratic risk are highest in 

periods of the industry life-cycle when innovation is the most ‘radical’.  However, while there 

we measured innovation at the industry level (e.g. through a quality index derived from 

hedonic prices), in the current paper we go a step further in linking innovation to volatility by 

using firm level patent data.  The productivity literature on market value and innovation has 

already established a positive relationship between a firm’s market value, its R&D intensity 

and its citation weighted patents (Griliches 1981; Pakes 1985; Hall 1993, Hall, Jaffe and 

Trajtenberg 2005). Here we see whether this type of data can also help us better understand 

volatility dynamics which, as argued above, have not been studied in light of firm specific 

innovation dynamics.   

Both Frank Knight (1921) and John Maynard Keynes (1973), who distinguished ‘risk’ 

from ‘uncertainty’, used technological innovation as an example of true uncertainty which 

cannot be calculated via probabilities like risk2.  We start from the assumption that patents 

that are “more important” are those that are the most uncertain due to the way they challenge 

the status quo, more so at least than incremental innovations (Tushman and Anderson 

1986).  We use citation weighted patents as a proxy for the ‘importance’ of an innovation and 

see whether firms with more ‘important’ innovations experience more volatility.  Specifically, 

we test for the relationship between firm level idiosyncratic risk and the following innovation 

variables: R&D intensity, patent counts, and patents weighted by their citations.  We also 

look at the impact of these variables on the level of price-earnings as this relationship lies at 

the core of the ‘rational bubble’ hypothesis where both the level and volatility of stock prices 

are related to the uncertainty regarding a firm’s average future profits (Pastor and Veronesi 

2004; 2005).    

As in our previous work, we focus our study on one particular sector so that we can 

better relate stock price dynamics to the changing character and intensity of innovation over 

the industry life-cycle (Gort and Klepper 1982).  The biotechnology and pharmaceutical 

industries (from now on biotech and pharma) are particularly interesting to study in this 

regard due to their high rates of patenting and R&D intensity (providing us with ample 

innovation data to study), and due to the way that the search process for innovations has 

changed over the last half century (as documented in Gambardella [1995], Henderson et al. 

                                                 
2 “The practical difference between the two categories, risk and uncertainty, is that in the former the distribution of 
the outcome in a group of instances is known (either from calculation a priori or from statistics of past experience). 
While in the case of uncertainty that is not true, the reason being in general that it is impossible to form a group of 
instances, because the situation dealt with is in a high degree unique…” (Knight, 1921, p. 232-233)     
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[1999]) — motivating us to also ask whether the relationship between innovation and volatility 

has co-evolved with such transformations.   

Our analysis is carried out in 3 stages.  We first see whether we can replicate the 

results found in the market value (Tobin’s q) and innovation literature (Griliches, 1981; Hall, 

Jaffe and Trajtenberg 2005 from now on HJT) using flow rather than stock variables 

(cumulative and depreciated), since in the case of volatility it is the latest ‘news’ that is 

relevant.  Second, we test for a statistical relationship between idiosyncratic risk and these 

innovation variables in order to explore the hypothesis that technology is the source of the 

increase in firm specific risk (as suggested but not tested in Campbell et al. [2001], and 

Shiller [2000]).  Third, we test the ‘rational bubble’ hypothesis in Pastor and Veronesi (2004) 

by exploring the relationship between the level of price-earnings (P/E) and the innovation 

variables, as well as the direct relationship between idiosyncratic risk and P/E.   

Our results provide preliminary evidence that there is indeed a positive and significant 

relationship between firm specific volatility and firm level innovation. We find that both 

idiosyncratic risk and the level of price earnings are significantly related to R&D intensity, and 

to the various patent related measures used in the analysis. We also find a positive 

relationship between these innovation measures and the level of price-earnings, as is 

predicted by the ‘rational bubble’ hypothesis.  We pay particular attention to the lag structure 

of the independent variables as this provides information on the speed at which the market 

reacts to news regarding innovation.  In this regard it appears that the lag on innovation 

outputs (patents) is lower than that on inputs (R&D), and also that the lags for biotech are 

lower than those in pharma, suggesting that the market reacts more quickly to innovation in 

newer segments of the sector.   

The rest of the paper is organized as follows. Section 2 reviews the literature on 

innovation and stock prices; Section 3 discusses the data used and the variables 

constructed; Section 4 provides descriptive statistics and a discussion of the model selection 

criteria; Section 5 presents the results and Section 6 concludes.  

2. Innovation and Stock Prices (level vs. volatility): a quick review 

Uncertainty in finance models refers to how expectations about a firm’s future growth 

affects its market valuation (Campbell, Lo and McKinley 19973).  Both Knight (1921) and 

                                                 
3 “The starting point for any financial model is the uncertainty facing investors, and the substance of every 
financial model involves the impact of uncertainty on the behaviour of investors, and ultimately, on market prices.”  
(Campbell, Lo and MacKinlay, 1997) 
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Keynes (1973) highlighted the way that technological innovation is an example of true 

uncertainty, which cannot be calculated via probabilities like risk.  Yet, even though a firm’s 

investment in technological change is a major determinant of its (potential) future growth, few 

finance models link stock price dynamics to innovation variables at the level of the firm and 

industry. The few studies that do relate stock price dynamics to innovation, do so mainly by 

linking changes in the stock price level to innovation, rather than linking changes in volatility 

of stock prices to innovation.  This is ironic given that it is especially the volatility of stock 

prices, more than their level, which should be related to ‘news’ on changes in technology.  In 

this section we review the literature that relates stock price dynamics to innovation, dividing it 

between those contributions that focus on the level of stock returns (2.1), and those that 

focus on the volatility of stock returns (2.2)—neither one using innovation data—and then our 

own contributions which have studied volatility dynamics using industry innovation data (2.3).  

The rest of the paper is then dedicated to studying volatility dynamics using firm level 

innovation data.    

2.1 Innovation and stock prices (level) 

Studies that link the level of stock prices to innovation come principally from the 

applied industrial economics literature which studies innovation and stock prices during the 

industry life-cycle (e.g. Jovanovic and MacDonald 1994; Jovanovic and Greenwood 1999; 

Mazzucato and Semmler 1999) and the productivity literature on market value (Tobin’s q) 

and patents (e.g. Griliches 1981; Hall, Jaffe and Trajtenberg 2005 from now on HJT). 

Jovanovic and MacDonald (1994) make predictions concerning the evolution of the 

average industry stock price level around the “shakeout” period of the industry life-cycle.  

They predict that just before the shakeout occurs the average stock price will fall because the 

new innovation precipitates a fall in product price which is bad news for incumbents.  Building 

on this work, Jovanovic and Greenwood (1999) develop a model in which innovation causes 

new capital to destroy old capital (with a lag) and since it is primarily incumbents who are 

(initially) quoted on the stock market, innovations by new start-ups cause the stock market to 

decline immediately since rational investors with perfect foresight foresee the future damage 

to old capital.  In a study of the US auto industry (1899-1998), Mazzucato and Semmler 

(1999) also relate the dynamics of the average industry stock price to the dynamics of the 

industry ‘shakeout’. 
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Another body of literature that connects stock prices to innovation is that on the 

relationship between a firm’s market value, its stock of R&D, and its stock of patents 

(Griliches 1981; Griliches, Hall and Pakes 1991; HJT 2005).  Using a Tobin’s q equation, this  

literature tries to evaluate whether the market positively values the investment of a firm in 

technological change: if patent statistics contain information about shifts in technological 

opportunities, then they should be correlated with current changes in market value since 

market values are driven by the expectations about future growth.  Given the skewed nature 

of the value of patents, Griliches, Hall and Pakes (2001) make use of patent citation data to 

distinguish important patents from less important ones. Using a Tobin-q equation, they find a 

significant relationship between citation-weighted patent stocks and the market value of firms 

where market value increases with citation intensity, at an increasing rate.  They find that 

while a reasonable fraction of the variance of market value can be explained by R&D 

spending and/or the stock of R&D, patents are informative above and beyond R&D only 

when weighted by citations (unweighted patent applications are far less significant).  The 

market premium associated with citations is found to be due mostly to the high valuation of 

the upper tail of cited patents (as opposed to a smoother increase in value as citation 

intensity increases)4.  A more recent study (HJT, 2005) finds further support for the 

relationship between knowledge assets and market value, highlighting differences between 

sectors: elasticity tests find that the marginal effect of additional citations per patent on 

market value is especially high in knowledge intensive industries such as the pharmaceutical 

industry. R&D stocks are more tightly correlated with market value than patents and patent 

citations stock is more significant than patents stock. 

2.2  Innovation and stock price volatility (with no innovation data) 

The few works that have looked at the relationship between innovation and the 

volatility of stock prices have done so mainly at the aggregate level, and without using 

innovation data.   Shiller’s work has shown that excess volatility is higher during 

periods of technological revolutions (Shiller 2000).  He claims that the efficient market 

model greatly underestimates stock price volatility due to the fact that it does not 

incorporate the social mechanism by which expectations are formed (i.e. animal spirits, 

herd behavior, bandwagon effects). In periods of technological revolutions, such effects 

are strongest due to the increased uncertainty  regarding both technology and demand 

(causing investors to be less confident about their own judgments).  
                                                 
4 That is, after controlling for R&D and the unweighted stock of patents, they find no difference in value between 
firms whose patents have no citations, and those firms whose patent portfolio has approximately the median 
number of citations per patent.  There is, however, a significant increase in value associated with having above-
median citation intensity, and a substantial value premium associated with having a citation intensity in the upper 
quartile of the distribution (HJT 2001). 
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Campbell et al. (2001) study the idiosyncratic versus systematic nature of volatility 

by decomposing the return of a typical stock into three components: the market wide 

return, the industry specific residual and a firm specific residual.  They use variance 

decomposition analysis to study the volatility of these components over time.  The firm 

specific residual is the idiosyncratic component of risk, while the market wide return 

captures the systematic component of risk.  They find that while aggregate market and 

industry variances have been stable (updating and confirming Schwert’s 1989 finding 

that market volatility did not increase in the period 1926-1997), firm level variance 

displays a large and significant positive trend, actually doubling between 1962 

and1997.  They claim that this increase is related to the impact of the IT revolution on 

various factors including the speed of information flows.  

Finally the work of Pastor and Veronesi (2005) provides interesting insights on the 

relationship between innovation, uncertainty and both the level and volatility of stock 

prices.  They claim that if one includes the effect of uncertainty about a firm’s average 

future profitability into market valuation models, then bubbles can be understood as 

emerging from rational, not irrational, behavior about future expected growth. Building 

on the result in Pastor and Veronesi (2004) that uncertainty about average productivity 

increases market value (because market value is convex in average productivity), they 

extend the model to explain why technological revolutions cause the stock prices of 

innovative firms to be more volatile and experience bubble like patterns.  The basic 

idea is that when a firm introduces a new technology, its stock price rises due to the 

expectations regarding the positive impact of the new technology on its productivity.  

Volatility also rises because risk is idiosyncratic when technology is used on a small 

scale.  But if/once the new technology gets adopted throughout the economy, then risk 

becomes systematic causing the stock price to fall and volatility to decrease.  This 

bubble like behavior is strongest for those technologies that are the most uncertain 

(and the most ‘radical’).   

2.3 Firm level innovation and stock price volatility (with innovation data) 

As none of the studies cited above (2.2) use innovation data, the relationship between 

innovation and volatility remains only a hypothesis. Our earlier work tests this hypothesis 

using firm and industry level innovation data. The fact that most shocks are idiosyncratic to 

the firm or plant makes this imperative (Davis and Haltiwanger, 1992).  In a comparative 

study on the auto and computer industries, Mazzucato (2002) finds that idiosyncratic risk and 
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excess volatility (as measured in Shiller [1981]5) are highest precisely during the decades in 

the industry life-cycle in which innovation is the most radical6 and market shares the most 

unstable—the latter due to the ‘competence destroying’ effect of radical innovations on 

industry market structure (Tushman and Anderson 1986).  For this reason Mazzucato and 

Tancioni (2006) argue that both market share instability and stock price volatility are indices 

of competition that ‘capture’ well the dynamics of creative destruction (in the PC industry 

better than entry/exit rates).  

Mazzucato and Tancioni (2005) attempt to generalize the above finding by studying 

whether idiosyncratic risk is higher for those firms and industries that are more R&D intensive 

(and in general more innovative according to sectoral taxonomies of innovation found in 

Pavitt 1984, and Marsili 2001).  The study is first performed on 34 different industries using 

data on industry level stock prices and R&D intensity, and then on firm level panel data for 5 

specific industries that span the highly innovative to low innovative horizon (biotech, pharma, 

computers, textiles and agriculture).  In the latter, firm-level idiosyncratic risk is regressed on  

firm level R&D intensity, for 822 firms between 1974-2003.  It is found that while it is not true 

that more innovative industries are on average more volatile than less innovative ones 

(echoing to some extent the finding in Campbell et al. 2001 that industry level risk has not 

increased), at the firm level a positive and significant relationship is found between 

idiosyncratic risk and R&D intensity.  Interestingly, the relationship is stronger for the biotech 

industry and the textile industry than for pharma and computers.  This may be because 

investors react strongly to news on innovation by firms in uncertain new industries, such as 

biotech or nanotechnology (with high potential growth), as well as to innovative firms in 

relatively static non innovative industries (such as textiles) since the latter ‘stick out’ from the 

crowd.  Firms in innovative but mature industries, like pharma or computers, tend instead to 

provoke less of a reaction since innovation is common (with high average R&D intensity) but 

less radical and uncertain due to the particular stage of the industry in its life-cycle.    

                                                 
5 In Mazzucato and Semmler (1999) and Mazzucato (2002), “excess volatility” is measured as in Shiller (1981), 
i.e. the difference between the standard deviation of actual stock prices (vt) and efficient market prices (v*t):  
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tv is the ex-post rational or perfect-foresight price, ktD + is 

the dividend stream, jt+γ is a real discount factor equal to )1/(1 jtr ++ , and jtr + is the short (one-period) rate of 

discount at time t+j. 
6 Innovation is measured here using quality change data derived, as in Filson (2001), by dividing hedonic prices 
by actual BEA prices. Hedonic prices are from Raff and Trajtenberg (1997, for autos), and Berndt and Rappaport 
(2000, for computers). In the case of autos, the analysis is supported by the use of an innovation survey by 
Abernathy et al. (1983) which ranks all innovations in the auto industry between 1890 and 1982 in terms of the 
degree to which the innovations altered products and processes.  
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In the remaining sections of the paper, rather than using indirect or input measures of 

innovation, we use firm level patent citation data (as in the studies reviewed above by Pakes 

1985 and HJT 2001;2005).  Our aim is to see whether the degree of excess volatility of 

returns and thus the dynamics of idiosyncratic risk are indeed positively correlated with more 

“important” innovations as is implied in the works cited above.  We also explore the 

relationship between radical innovation and the level of stock returns, as is implied (but not 

tested) in the work by Pastor and Veronesi (2004; 2005). Before discussing the details of the 

models we review the data, and in particular various issues related to patent citation data.  

3. Data and constructed variables 

3.1 Data  

We study the pharma and biotech industries from 1975 to 1999.  Our sample of firms 

is constructed by merging financial data from S&P (purchased from S&P Custom data dept) 

and USPTO patent data (extracted from the NBER patent citation database included in the 

book/CD by Jaffe and Trajtenberg 2002).  The NBER patent citations database provides 

detailed patent related information on 3 million US patents granted between January 1963 

and December 1999, and all citations made to these patents between 1975 and 1999 (over 

16 million).  For each patent, information on the citations it received (a forward looking 

measure, which captures the relationship between a patent and subsequent technological 

developments that build up on it, i.e. its descendants), and the citations made (a backward 

looking measure which captures the relationship between a patent and the body of 

knowledge that preceded it, i.e. its antecedents). Weighting patents by citations is important 

since studies have found that the distribution of the value of patents is highly skewed, with 

few patents of very high value, and many of low value (a large fraction of the value of the 

stream of innovations is associated with a small number of very important innovations, 

Scherer, 1965).  There is also information on the number of claims, which is often recognized 

as an indicator of the wideness of the patent.  Although in our future work we plan to take into 

account various indices constructed using citations (e.g. the level of generality or originality of 

an innovation)7, in the current work we use only the number of patents for each firm and the 

number of citations received per patent.  

                                                 

7 For example, the degree to which an innovation is ‘general’ or ‘original’ can be measured using indices which 
use citations received and citations made data along with data on particular technological fields. A patent which is 
very general is one which has received citations from other patents in a wide variety of fields.  A patent which is 
instead highly original is one which makes citations to other patents in a limited set of technological fields.  
Inserting this information in our future work will allow us to see whether the market places more/less value on 
certain types of innovations than others.   



 10

We have S&P financial data for 323 pharma firms and 563 biotech firms quoted on 

the stock market between 1950 and 2003.  We use the firm CUSIP code to match firms in 

the two data bases.  Only firms pertaining to the GIC codes (which in 2000 replaced the SIC 

codes), 352010 for biotech and 352020 for pharma are included in the analysis.  To merge 

the two databases, we use the patent application date rather than the patent granted date 

since the latter is subject to idiosyncratic changes in the speed of the patent review process.  

The merging of the two databases results in a restricted sample: out of a total of 323 

pharmaceutical firms and 563 biotech firms in the S&P database, the merged sample 

contains 126 pharma firms and 177 biotech firms.  No further sample selection criteria have 

been employed because our main objective is to use all the available information8.  Since 

firms are not always present in the sample for the whole time period (see changing number 

of firms in Figure 1), we obtain an unbalanced sample. To deal with unbalanced sample 

panel estimations, we employ correction techniques to control for the presence of missing 

data in some periods.   Figure 1 indicates that the number of firms rose steadily in both 

industries, slowing down in the early 90s for pharma, and in the late 90s for biotech. A look at 

the herfindahl index shows that in both industries, the rise in firms was accompanied by a fall 

in concentration.  

We use the following firm level variables from the S&P database: stock price (P), 

dividend (D), revenue (Rev), price-earnings ratio (P/E), market value (MKTV), and R&D. We 

also use the average S&P500 value for all these financial variables9.  The following 

innovation variables (in logs) are used from the patent database: the annual number of 

patent applications (PAT); patents weighted by citations received (PATW); and patents per 

R&D, or the patent yield which captures the efficiency of R&D (PATY). We also explore the 

use of citations made (i.e. backward citations) but find this measure to be less significant 

than citations received so use only the latter in the final analysis.  

The financial variables are monthly; R&D is quarterly; and patents are annual10.  

Following Schwert (1989), the monthly S&P data is used to calculate the volatility of annual 

returns (standard deviation of 12 months).  We use monthly financial data, rather than daily 

data, since it would be exaggerated to expect that quarterly R&D figures and annual patent 

                                                 
8 There are other sample selection criteria that one might have used. For example, in a related study on spill-
overs and market value, Deng (2005) omits firms with less than 3 years in the Compustat database. She does this 
in order to avoid dealing with their volatile performance. We do not do this since volatility (often caused by such 
start up firms) is the focus of our analysis.  

9 On average, nearly 95% and 97% of the merged sample is available when financial variables are matched with, 
respectively, R&D intensity and patents weighted by citations received.  

 
10 The patent application date is listed by year, while patent grant date is listed by month.  
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data have an impact on daily stock prices.  Furthermore, Campbell et al (2001) analyze 

volatility using both daily and monthly data and do not find qualitative differences (in trends).  

To measure idiosyncratic risk we do not use the variance decomposition method 

used in Campbell et al. (2001) which isolates firm, industry and market level volatility through 

a variance decomposition analysis.  Rather, we a proxy for idiosyncratic risk (IR) which 

captures the degree to which firm specific returns are more volatile than market level returns: 

the ratio between the standard deviation of a firm’s return11 and the standard deviation of the 

average market return (the standard deviation of the S&P500 return).  We control for (fixed) 

industry effects with industry dummies (for biotech and pharma).   

The R&D and patent variables are entered in terms of flows rather than stocks.  This 

lies in contrast to the market value and innovation literature (HJT 2005), which instead uses 

stocks (cumulated and depreciated, usually at 15%).  We use flow variables because while it 

makes sense to think that it is the stock of intangible assets that affects the level of market 

value, changes in stock prices (hence their volatility) are affected mainly by recent ‘news’ that 

the market did not previously take into account (flows not stocks).  Since we are mainly 

concerned with the determinants of IR (which is stationary over time), the use of cumulative 

and thus integrated variables such as stocks would render the estimations unbalanced and 

potentially distorted.  Furthermore, in a study by Hall (1993), where R&D is entered both as a 

stock and as a flow in the market value equation, it is found that the flow variable has more 

explanatory power than the stock “…which implies a higher valuation on recent R&D than on 

the history of R&D spending.” (Hall 1993, p. 261)12.    

3.2 Truncation and other data issues 

Patents citation data are naturally susceptible to two types of truncation problems.  

One has to do with the patent counts and the other one with the citation counts13.  The 

former arises from the fact that as the end date is approached, only a percentage of the 

                                                 
11 The return of a firm’s stock is defined as: 

1−

+

t

tt

P
DP

. 

12 Hall (1993) notes that the significance of the R&D flow is reduced when cash flow is included as a regressor 
suggesting that at least part of the R&D flow effect arises from its correlation with cash flow. In contrast, the R&D 
stock variable is not sensitive to the inclusion of the cash flow variable.  We test for this below and find that the 
cash flow variable is less significant than it is in Hall (1993).  

13 Another problem regarding citations is that since the propensity to cite is not constant, it is important to 
distinguish when an increase in the number of citations (e.g. technological impact of the patent) is “real” as 
opposed to “artefactual”. The latter includes the possibility that in some periods there was “citation inflation”, e.g. 
due to institutional factors (e.g. USPTO practices) and/or differences across fields. 
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patents that have been applied for (and are later granted) are available in the data. The 

second truncation problem regards citation counts. As the NBER data ends in 1999, we have 

no information on the citations received by patents in the database beyond this period. 

Although this affects all the patents in the database (patents keep receiving citations over 

long periods, even beyond 50 years), it is especially serious for patents close to the end 

date.  Since every year suffers a different degree of this problem (with the later years 

suffering more), it makes comparison between years difficult.   

There are two main ways to deal with both these truncation problems  The first is the 

fixed effects approach, the second is the structural approach (both reviewed in detail in Jaffe 

and Trajtenberg 2002, Ch. 13).  The fixed effects approach involves scaling citation counts 

by dividing them by the total citation count for a group of patents to which the patent of 

interest belongs (e.g. by period, or by field).  In essence, this means calculating the firm’s 

share of total industry patents14.  The quasi structural approach is a more involved approach 

based on estimating the shape of the citation lag distribution, i.e. the fraction of lifetime 

citations (defined as 30 years after the grant date) that are received in each year after the 

patent is granted (HJT 2005)15.  Unlike the fixed effects approach it allows one to distinguish 

real from artefactual differences between years and fields. For example, one can see 

whether the patents issued in the late 1990’s made fewer citations, after controlling for the 

size and fertility of the stock of patents to be cited, than those before. By doing this, one can 

get the “real” 1975 patents, just as with CPI adjustments.  

We follow a slightly modified version of the fixed effects approach.  However, since 

we are dealing with an unbalanced sample, we divide by the average industry citations not 

the total since the latter varies with the number of firms.  That is, if the number of firms that 

are present in the sample increases over time (as evident in Figure 1), while the innovative 

activity remains stable16, the standard fixed effects correction would bias downward the 

                                                 

14 To remove year and/or field effects, the number of citations received by a given patent are divided by the 
corresponding year-field mean, or only by yearly means to remove only year effects.  The justification for the 
correction is to remove factors of time variability that are not related to substantial innovation, as in the case of 
legislative interventions which affect number of patents and citations (e.g. the Bayh-Dole act), or by the truncation 
issue.  The problem with this method is that it does not distinguish between differences that are real and those 
that are artefactual (e.g. if patents in the 1990’s really did have more technological impact, removing the year 
effects ignores this real factor.).   
15 Given the distribution, which is assumed stationary and independent of the overall citation intensity, the authors 
estimate the total citations of any patent for which a portion of its citation life is observed. This is done by dividing 
the observed citations by the fraction of the population that lies in the time interval for which citations are 
observed (HJT, 2005, p. 13) 
 
16The number of firms that are contemporaneously present in the whole sample goes from 31 in 1980 to 187 in 
2003, while the average number of patent applications is (only) doubled in the same period. 
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measure of innovation17.  Dividing by the yearly average (as opposed to the yearly total), 

means that the correction is not affected by the changing number of firms in the sample18.  

Lastly, another way we confront the truncation problem is to test our results on two 

samples. One sample which ends in 1999, i.e. the last year included in the NBER patent 

citation database, and another sample which ends in 1995, before the truncation problem 

becomes serious.  This strategy, which is also followed in HJT (2005), is a crude way of 

getting rid of the most problematic (later) years referred to above and an admission that all 

the truncation adjustments don’t totally solve the problem.   

3.3 The pharma-biotech sector 

As in our previous work on stock price volatility (Mazzucato and Semmler 1999; 

Mazzucato 2002; 2003), we focus on a single sector so to better take into account the 

possible effect of qualitative and quantitative changes in innovation over the industry life-

cycle (not possible in more static cross-section industry studies).  We focus on the pharma 

and biotech industries due to the fact that the high R&D and patenting intensity of these 

industries provides us with ample innovation data, and also because much has been written 

about changes in innovation dynamics in this sector, allowing us to test whether the 

relationships we study have evolved alongside such transformations. For example, 

Henderson et al. (1999) describe the changes that have taken place since the mid 1980’s in 

the innovative division of labor between large pharma firms and small (dedicated) biotech 

firms.  Similarly, Gambardella (1995) describes how advances in science (enzymology, 

genetics and computational ability) since the 1980’s caused a change in the way that firms 

search for new innovations: a pre 1980 period of "random screening",  and a post-1980 

period of “guided screening” characterized by more scale economies and path-

dependency19.  An important institutional event which affected patenting behavior in this 

period was the 1980 Bayh-Dole act which allowed universities and small businesses to 

patent discoveries emanating from publicly sponsored research (e.g. by the NIH), prompting 
                                                 
17 Furthermore, the FE approach suggested in Jaffe and Trajtenberg (2002) removes the time series variability, 
since the evolution of innovative intensity over time is substantially extracted by the correction. 

18 An example: in 1970, Abbot Technologies has 7 patents, that receive a total of 40 citations, and in the entire 
pharmaceutical industry there are 20 firms, with 107 patents which have 792 citations.  This means that we need 
to first divide 40 by 7 to get the numerator. However, since we don’t want to eliminate the data on patents that 
receive no citations (to distinguish them from those firms that have no patents at all) we add 1 to each citation 
figure so that it is 41 divided by 7, equal to 5.85. Then to adjust for the two types of truncation problems we divide 
5.85 by the total number of citations in the industry (+1), divided by the average number of patents in the industry 
which is 793/107, divided then by the number of firms, 20 = .370.  So the figure in 1970 for Abbot Technologies is 
15.81.    

 
19 Gambardella (1995) documents that although the guided regime did not increase the number of new molecules 
discovered, it did decrease the failure rate of those tested (hence making the process more efficient).   
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many biotech spin-offs from academia. By including interactive period dummies (pre 1985 

and post 1985), we test whether the relationships between volatility and innovation differ in 

these different innovation regimes.   

As many patents in the pharma industry do not result in new drugs (Harris, 2002; 

Pisano 2006) 20, we do not assume that patents represent actual innovations, but rather 

signals that the market receives regarding the potential ‘innovativeness’ of a firm.  The more 

patents a firm has the stronger the signal regarding its potential innovativeness, and the 

more citations per patent, the more important (trustworthy) the signal.  This lies in contrast 

with the usual interpretation of R&D as an input and patents as an output of the innovation 

process.  In fact, it might be that because there are so many patents in this industry (inflated 

especially after the 1980 Bayh-Dole act), the market treats them as more noisy signals than 

in other industries, and hence citations take on an even more important role as a filtering 

device.  The biotech part of the sector is in an earlier phase of its life-cycle than pharma, and 

in some respects more innovative (since biotech firms are more focused on research, and 

less on marketing and distribution, than pharma firms), hence it is interesting to see whether 

in biotech, patents are treated as stronger signals of potential innovations than in pharma.  It 

is also interesting to see whether the fact that biotech firms are more focused on single 

research projects, hence less diversified in their research portfolio, produces more volatility.   

In general, the role of biotech in the innovative division of labor (Henderson et al. 1999), 

affects the degree to which patents act as signals in the sector, the speed of the market’s 

reaction to such ‘news’, and the perceived risk.  

4. Descriptive statistics and model selection 

4.1. Descriptive statistics 

Table 1 contains descriptive statistics on the different variables used in the study for 

the (a) full sample, (b) for pharma only, and (c) for biotech only. The table contains first the 

information for the three financial variables (market value, price-earnings, idiosyncratic risk) 

and then for the innovation variables, including the productivity of R&D, i.e. the patent yield’ 

(PAT/R&D) used in HJT (2005). 

The average number of patent applications (PAT) per firm is 8.3 (9.5 for pharma and 

nearly 4 for biotech), with large variability in both industries (standard deviations are 17.5 and 

                                                 
 
20 Pisano (2006) reports that it takes an average of 10-12 years for a company to get a drug out on the market. 
Only 10%-20% of drug candidates beginning clinical trials have been approved by the FDA. 
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18.4 respectively). Employing a standardized measure of variability (coefficient of variation), 

we observe that patenting activity is more heterogeneous amongst the biotech firms than the 

pharma firms.  In the case of weighted patents (PATW), both the sample mean and the 

standard deviation are much higher for the biotech industry—indicating that although there 

are more patents in pharma, they are on average more ‘important’ in biotech.  Sample 

means and standard deviations of R&D intensity are much higher in pharma than biotech 

(though as is well known, what is counted as R&D in pharma, sometimes also includes 

marketing type activities).  The skewness measure indicates a high degree of asymmetry 

(long right tails) for all the innovation variables, with R&D more skewed in pharma than 

biotech, but patenting more skewed in biotech than pharma. The Kurtosis measure indicates 

that the distributions (in both samples) are also leptokurtic compared to the normal.   

With regards to the financial variables, the level of market value and the level of price 

earnings (MKTVAL and P/E) exhibit a large amount of variation, while idiosyncratic risk (IR) 

appears more concentrated around a normal distribution. They result all positively skewed 

and leptokurtic, with the distribution of IR being closer to the normal.  The average P/E for 

biotech is three times that in pharma, as would be expected given the smaller average size 

of biotech firms, the fact that they often have low earnings (Pisano 2006), and their higher 

innovativeness (evidenced by their higher patent yield) hence higher expected growth.   

  Static correlations between the variables don’t show much significance, since, as will 

be seen below, the variables are significant in the various regressions with different lags: 

patents at time t are correlated with R&D intensity at time t-3.  We do not perform lagged 

correlations, if we view the correlations dynamically by plotting variables together over time, 

we see some interesting relationships. From Figure 2a and 2b, idiosyncratic risk appears 

remarkably correlated with both R&D intensity and, to a lesser extent in the biotech industry, 

to citation weighted patents. These figures provide a first, albeit simplistic, indication of the 

co-evolution of idiosyncratic risk and innovation—investigated more rigourously below.  

It is interesting to see that in Figure 3 the rise in citation weighted patents is 

accompanied in both pharma and biotech (but more so for biotech) by a rise in market share 

instability21.  This is precisely what would be expected by the literature on ‘competence-

destroying’ innovations (Tushman and Anderson 1986) and gives us a preliminary reason to 

expect that citation weighted patents also affect the volatility of stock prices (as these are 

                                                 
21 The market share instability index is defined in Hymer and Pashigian (1962): |][| 1,
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affected by the expected future market share of a firm).  This result in fact confirms that 

found in Mazzucato (2002): market share instability is highest in periods of the industry life-

cycle when innovation is the most ‘radical’ or competence destroying (discussed in 2.3).    

4.2 Model selection 

In the remaining sections, we test the relationship between the innovation variables 

discussed above and the level and volatility of stock returns (all the variables in logs).  We 

first try to replicate the results found in HJT (2005) regarding the relationship between market 

value, R&D, and patents. Second, we regress idiosyncratic risk on the innovation variables to 

test whether firm specific risk is related to innovation, as hypothesized (but not tested) in 

Campbell et al. (2001). Third we test the relationship between innovation and the level and 

volatility of stock prices found in the “rational bubble” hypothesis (Pastor and Veronesi, 

2004), by regressing the P/E ratio on idiosyncratic risk (IR) and then directly on the 

innovation variables.    

Specifically, the equations we test are:  
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Model 4 
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The term L refers to the lag that emerges from the estimations (lags chosen on the 

basis of likelihood ratio tests).  In each model, we also test a version of equation (c) that 

includes the patent yield variable (PATY), but only report on the results for this variable when 

it emerges as significant (it is only significant in model 4 as seen in 4d and 4e in Tables 2 

and 3). 

 

In each estimation we include a control for firm size: a firm’s market share (firm 

revenues divided by industry revenues) and the share of a firm’s capitalization compared to 

the industry capitalization (introduced separately due to the correlation between them). As 

the former is found to be more significant than the latter, we report results in the tables only 

with market share as the firm size control. Controlling for firm size is important due to the fact 

that small firms tend to be more volatile than large firms (in both growth rates and stock 

prices).  Two dummies are also used to control for various aspects of the innovation 

dynamics discussed in 3.2:  a period dummy to test whether the relationships are 

stronger/weaker in one of the two innovation regimes (pre/post 1985); and an industry 

dummy to see whether the dynamics differ in biotech, the relatively newer segment of the 

industry.  

The panel structure of the data-set suggests to employ as natural model alternatives 

the pooled, the Fixed Effects (FE) and the Random Effects (RE) specifications.  With the FE 

model, firm level factors systematically enter the relationships, while in the RE model these 

factors are distributed randomly, i.e. they are an error component which is constant over 

time. The FE model thus presumes that there are omitted variables that have section specific 

effects, such as tacit knowledge and related managerial capabilities.  HJT (2005) adopt a 

pooled model with period and industry dummies. Aside from the fact that their significant 

results (between market value and innovation) disappear when FE are used (as also in the 

related literature), they do not include FE for two reasons.  First on the grounds that since 

R&D stocks change slowly over time (by construction), the inclusion of FEs would capture 

those systematic components that are deemed related to firm specific R&D strategies, i.e. to 
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the independent variable. Second on the grounds that since firms change their strategies 

over time in response to market signals, the FE model is inappropriate as it presumes 

permanent firm specific effects.   

In our case, the first point is irrelevant since we are dealing with volatile flow data and 

not with slowly-changing stocks, hence FE are not likely to be excessively correlated with the 

independent variable and thus to capture the sample correlation between the dependent and 

independent variables. Concerning the second point, we believe that even if firm strategies 

vary in response to time-varying market signals, the presence of publicly available 

information on fundamentals may result in systematic cross-sectional factors, reflecting 

relatively permanent aspects of the specific firm’s fundamentals that are not explicitly taken 

into account in the model specification22. 

For these reasons, unlike HJT (2005), we do not impose any particular model 

specification and base our choices on statistical information only. The model selection 

procedure is implemented in two steps, first evaluating the statistical relevance of the 

individual (firm) effects and then whether they are correlated with the regressors. This is done 

by testing, via the Breusch-Pagan LM test, for the presence of individual effects against the 

common constant model (pooled estimator), and then testing the null of orthogonality of the 

individual effects, i.e. the RE specification, assuming an FE as alternative hypothesis. In this 

second step the reference evaluation tool is the Hausman test 23. 

The Breusch-Pagan test rejects the null hypothesis of the pooled model (common 

constant) for the entire set of specifications, suggesting to employ as a first step the RE 

specification.  After the Hausman test, an RE model is selected only for model 4.  In all the 

other cases a FE specification is selected. The model selection results are presented in 

column 2 of Tables 2-3.  At the current stage, we are still working on the biotech sample, 

hence present here the results only for the whole sample and pharma.  

 

 
                                                 
22 We don’t think there is an objective reason to believe that firm specific effects are fixed over time and randomly 
distributed over the sample, as implied in the RE specification. Moreover, the RE model presumes that the section 
specific effects and the explanatory variables are uncorrelated. This assumption is questionable, since it is likely 
that the omitted factors that are relevant for the dependent variable are also relevant in determining the 
explanatory variable (Mundlack, 1978). As regards our specific analysis, the omitted factors no doubt include tacit 
knowledge and managerial capabilities, factors that have relevant effects on both innovative activity and the 
market performance of a given firm. 
 
23 The Breusch-Pagan (1980) LM statistic tests whether the variance of individual effects in the error term is zero, 
hence it actually maintains the RE model under the null hypothesis. 
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5. Results 

The results of the preferred models are summarized in Table 2 for the whole sample 

and Table 3 for the pharma sample (biotech table available soon).  When the estimations are 

done using the FE estimator, introducing industry dummies (in the case of the whole sample) 

does not make sense.  Hence, with FE estimations we report the results without the 

dummies. Yet when we look at the effect of this dummy in the first step of the Hausman test 

when the RE estimator is used, we find that the sign and significance of the biotech dummy 

is always significant, with a negative sign in model 1 (i.e. biotech firms have on average 10% 

less market value than the sample mean), a positive sign in model 2 (biotech firms 

experience on average 45% more idiosyncratic risk than the sample mean), and a positive 

effect in models 3 and 4 (biotech firms have on average 30% higher P/E than the sample 

mean).    

Our estimates result substantially unchanged when employing the reduced sample 

with end date fixed at 1995 in the place of 1999 (as done also in HJT 2005).  This suggests 

that our correction for the truncation problem, using the fixed effects methodology discussed 

above, was efficient.   

The inclusion of the post 1985 period dummy resulted statistically significant only for 

model 2, signaling the possibility of a structural break in the dynamics of volatility after 1985.  

However, as the inclusion of this dummy created some sample biases in the second period 

(due also to the much larger number of firms in the second period, as is clear in Fig. 1), we 

report the results without the dummy as it does not affect the results except to signal that 

there is more firm specific volatility in the second period, a result confirmed in the work of 

Campbell et al. (2001). We plan to study this phenomenon more in our future work, trying to 

link it to changes in the search (innovation) regimes discussed in Gambardella (1995) and 

elsewhere.  

Column 5 in Tables 3 and 4 shows that the sign for the control of firm size (market 

share) is as expected:  firm size has a positive effect on the level of market value, but a 

negative effect on volatility and the price-earnings ratio.  That small firms experience more 

volatility, in both growth and stock prices, is a well known phenomenon.  The fact that small 

firms also have high price-earnings is easier to interpret for highly innovative firms who have 

low earnings but high potential growth. It is less easy to interpret for those small firms that 

are not particularly innovative, but we cannot look into this unless we put their innovativeness 

as the dependent variable (something we may explore in our future work).  The use of the 
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firm’s capitalization share as the control for firm size instead results statistically insignificant 

when employing the FE estimator, signaling that this effect is relatively stable over time and 

captured by the firm specific dummies (even if significant in the RE regressions, its presence 

does not alter the qualitative and quantitative results of the estimates).   

In what follows we review the results from Models 1-4, commenting only on the effect 

that the various innovation variables have on market share, idiosyncratic risk and price-

earnings (note: as in this version of the paper we are still in the process of analyzing the 

separate biotech sample, we focus our comments mainly on the whole and pharma 

samples).   

Model 1: Market value and innovation  

  Results for model 1 illustrate that R&D intensity, patent counts, and weighted patents 

have a positive and significant effect (each at the 1% level) on the level of market value.  It is 

interesting that positive results arise even when using flow data, instead of the usual stock 

measures used in the market value and innovation literature (HJT 2005).  Furthermore, the 

introduction of the simple patent count does not lead to a statistically insignificant R&D 

intensity coefficient, as it does when using stock measures.    

When the patent count variable is entered in 1b, the R&D intensity coefficient is 

reduced in size, signaling that there is a certain degree of correlation between R&D intensity 

lagged 2 years and current patent applications.  When we run the pharma and biotech 

samples separately, the reduction in the size of the coefficient is stronger in the biotech 

industry, signaling the presence of a higher correlation between PAT and R&D intensity in 

this part of the industry (not surprising given the higher mean patent yield in biotech).   This 

result is consistent with a mean patent application lag respect to R&D expenditure of 

approximately 3 years24.    

In each of the equations in model 1, R&D is most significant with a lag of 2 years, and 

patents with no lags.  This suggests that the market reacts quicker to news on patents than 

to news on R&D, most probably due to its understanding of the lengthy process of research 

in this industry (Pisano 2006).   

When patents are weighted by citations received (1c) the estimated coefficients are 

bigger in size and their statistical significance strongly improved, irrespective of the specific 

sample being considered.  When employing patents weighted by citations made, rather than 

                                                 
24 The regression of patent applications on R&D intensity results statistically significant, and the best fit is 
obtained when the explanatory variable is entered with three lags. 
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received, the R&D intensity coefficient resulted weaker in both size and statistical terms.  In 

sum, the equation fit is consistent with the result of HJT [2005], and improves strongly when 

patents are weighted by citations received (as in HJT 2005). The introduction of the patent 

yield variable proved insignificant, and as it is correlated with our measures of patents and 

R&D we did not include it in the tables (unless significant).  

Model 2: Idiosyncratic risk and innovation  

In model 2 we evaluate the hypothesis that idiosyncratic risk is related to firm level 

innovation, as proxied by R&D intensity, patents and weighted patents.  We find that the 

innovation variables are significant, but less so here than in model 1.  R&D intensity is always 

significant, with its significance increasing from 10% to 5% when patent measures are 

included as well.  Although patent counts are not significant, weighted patents are (at the 

10% level).  Thus unlike market value in model 1, it appears that volatility reacts more 

strongly to citation weighted patents (i.e. more important patents) than simple patent counts.  

As in model 1 the lag on R&D is higher than that on patents (2 and 1 years 

respectively), yet patents have a higher lag in model 2 than in model 1.  The lags we find 

seem reasonable as they suggest that R&D investment takes time to have an effect on 

volatility, while patents don’t.  It might also be that the market foresees the patent application 

given the spending on R&D that has already occurred.  As in model 1, patent yield is 

insignificant.  

When we ran the pharma and biotech samples separately, we found that in the case 

of pharma the significance of patents and weighted patents rose significantly (to the 5% 

level), while patent yield remained insignificant.  The lags in pharma are higher than those in 

the combined sample, suggesting that the market takes longer to react to older segments of 

the sector (a hypothesis we are currently investigating further).  

Model 3: Price-earnings ratios and idiosyncratic risk (rational bubble) 

Pastor and Veronesi (2004) claim that if one includes the uncertainty about a firm’s 

average future profitability into market valuation models, then bubbles can be understood as 

emerging from rational behavior about expected future profitability25.  As discussed above, 

                                                 

25 Pastor and Veronesi (2004) use the Market to Book ratio (M/B), which replaces the P/D ratio employed in the 
theoretical derivations of Gordon’s growth formula, on the grounds that dividends are not paid out by small start 
ups. We instead use P/E instead of P/D since both earnings and dividends, are proxies for the “fundamental” 
value underlying stock movements. 
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this model predicts a positive relationship between the level and volatility of stock returns, 

both increasing when new technologies first emerge, then falling when the uncertainty 

around the technologies decreases. With models 3 and 4 we evaluate these hypotheses 

empirically: we first regress price-earnings on idiosyncratic risk (model 3), and then price-

earnings on the various innovation measures (model 4).  

In model 3 we obtain a positive and statistically significant coefficient for idiosyncratic 

risk, at the 1% level in the whole sample as well as the separate samples.  The best 

estimates are obtained when IR is entered with 0 lags, suggesting a simultaneous 

relationship between the level of P/E and the volatility of returns, as would in fact be 

predicted by the rational bubble hypothesis.  This significant relationship between the level of 

price-earnings and the volatility of firm specific returns, also finds support in the empirical 

literature on the high frequency relationship between prices (or returns) and market 

volatility26.     

Model 4 Price earnings and innovation 

Finally, we regress P/E on the various innovation variables used above. As discussed 

previously, this is the only model that is estimated using random effects.  As in model 1, R&D 

is significant at the 1% level, but unlike model 1, the patent count variable is negative (and 

significant). Weighted patents are positive and significant at the 5% level. Unlike the previous 

models, patent yield is also significant (at the 5% level), in both the combined and pharma 

sample, suggesting that, amongst the financial variables, P/E best reflects the potential 

innovativeness of a firm as it is more related to the ‘efficiency’ of innovation expenditures 

than the other financial variables. The lag structure is the same as in the models above, also 

in the separate samples.   

As already discussed, the biotech dummy is positive and significant, indicating that on 

average biotech firms have a P/E ratio 30% higher than the sample mean.   This is to be 

expected given that small innovative biotech firms often have low earnings, so that their 

stock valuation is determined largely by their investment in innovation (note the higher mean 

P/E for biotech firms in Table 1).    

This positive relationship between P/E and innovation provides support to the rational 

bubble model in Pastor and Veronesi (2004; 2005) where it is assumed, but not proved, that 

P/E should be higher for firms that introduce radical technologies.   
                                                 
26 The rationale is that increasing portfolio risk is compensated by augmented expected returns. The ARCH-in 
mean specification in GARCH modeling for financial time series aims at directly accounting for this relationship.  
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6.  Conclusion   

Our study provides empirical support to the untested assumption in recent finance 

literature that the volatility of stock prices (both aggregate and idiosyncratic) is related to 

innovation.  We use firm level R&D and patent data (citation weighted) to test whether firms 

that are ‘more innovative’ are characterized by higher volatility of stock returns, compared to 

those in the general market, and higher relative levels of market value and P/E.     

 The lag structure of the innovation variables (in each of the models) provides insights 

into the speed at which the market reacts to innovation ‘signals’. Lags are higher for R&D 

than for patents, suggesting that the market reacts more quickly to signals regarding 

innovation outputs than inputs.  It is sensible to think that uncertainty is in fact highest at the 

time a patent is applied for, since this includes the uncertainty regarding whether the patent 

will be granted, as well as uncertainty regarding the effect of the patent on the firm’s growth. 

This is especially true in the pharma sector where there is a high patenting rate but a very 

low rate of new drug discovery (Orsenigo, Dosi and Mazzucato 2006).  Pisano (2006), in fact, 

claims that one way that the pharma and biotech industries differs from other high tech 

industries, such as computers and software, is the profound and persistent uncertainty of the 

R&D process due to the limited knowledge of human biological systems (as opposed to 

chemical or electronic)27.  The fact that in all the models weighted patents are more 

significant than patent counts, suggests that the market is relatively efficient in understanding 

which patents are more important, and to not be fooled by the patent inflation that has 

occurred especially since the 80’s.   

We find that volatility is higher in the case of small firms (proxied by market share) 

and in the post 1985 period, characterized by a more guided search regime (due to scientific 

and organizational changes described in Gambardella 1995).  The higher volatility in the 

latter period is most likely related to the fact that this period is characterized by an ‘inflation’ 

of patents (due to the effect of the 1980 Bayh-Dole act on patenting behavior), which reduces 

their reliability as a ‘signal’ of real innovation (hence more mistakes made by investors).  

Though the fact that weighted patents have a stronger effect on volatility (as well as P/E) 

than simple patent counts, suggests that the market is able to, at least partially, filter through 

this noise.  

Finally, we reproduce the results found in the market value and innovation literature 

(HJT 2005) using flow rather than stock variables, and also find a positive relationship 
                                                 
27 This is one of the reasons for its low R&D productivity, a delusion for those that hoped that biotech’s more 
nimble structure would save pharma’s low turnout of new drugs. 
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between the P/E ratio and the innovation variables, as would be predicted by the ‘rational 

bubble’ hypothesis (as well as a direct relationship between P/E and idiosyncratic risk). 

Interestingly, it is especially the P/E ratio that reflects the efficiency of the innovative process 

(the patent ‘yield’).  This supports the view that price-earnings are guided by expected future 

profitability of highly innovative firms. The fact that most biotech companies have no earnings 

(exceptions are the very big ones like Amgen and Genentech), means in fact that their value 

is determined almost exclusively by their ongoing innovation projects. Yet the fact that the 

R&D process is so lengthy and the projects so uncertain, means that valuation of firms is full 

of mistakes.  The corrections that emerge from this trial and error process are no doubt partly 

responsible for the stock return volatility associated with the various innovation variables.  

In our future work we plan to take more into consideration the rich source of 

information provided in patent citation data. For example, is volatility higher for firms that 

have more ‘original’, as opposed to more ‘general’, patents (see footnote 7)? We plan to also 

pay more attention to the temporal dimension of citations by asking whether recent citations 

have more effect on volatility.    
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Figure 1  
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Figure 2 Dynamic correlations    
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Figure 3  Innovation and market share instability 
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Biotech: Market Share Instability Index vs. PATW
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Table 1 Descriptive statistics 

 

WHOLE MKTVAL PE IR_SP500 IR_IND RD/REV PAT PATW PATYIELD

 Mean 5917.147 86.381 0.088 0.085 0.094 8.309 1.457 0.124
 Median 787.646 25.408 0.071 0.071 0.054 1.000 0.058 0.001
 Maximum 171234.700 9926.505 0.779 2.222 8.413 155.000 69.818 12.870
 Minimum 1.697 0.423 -0.029 -0.266 0.000 0.000 0.000 0.000
 Std. Dev. 17573.270 427.242 0.072 0.112 0.327 17.527 4.201 0.566
 Skewness 5.328 16.312 2.685 9.574 18.844 3.325 9.132 14.757
 Kurtosis 35.938 324.173 17.848 167.215 434.910 16.536 121.885 288.691

PHARMA MKTVAL PE IR_SP500 IR_IND RD/REV PAT PATW PATYIELD

 Mean 7166.306 43.123 0.077 0.081 0.119 9.530 1.237 0.091
 Median 998.557 22.768 0.063 0.068 0.078 1.000 0.105 0.003
 Maximum 171234.700 4108.527 0.420 0.420 8.413 118.000 22.000 3.890
 Minimum 1.697 4.357 -0.029 -0.083 0.000 0.000 0.000 0.000
 Std. Dev. 19589.670 158.310 0.058 0.061 0.366 18.407 2.598 0.288
 Skewness 4.724 21.204 1.503 1.135 17.009 2.772 3.846 6.548
 Kurtosis 28.515 531.733 6.691 6.210 350.434 11.392 21.954 59.816

BIOTECH MKTVAL PE IR_SP500 IR_IND RD/REV PAT PATW PATYIELD

 Mean 1422.355 242.034 0.126 0.101 0.004 3.913 2.252 0.240
 Median 234.938 56.036 0.105 0.082 0.002 0.000 0.000 0.000
 Maximum 39131.630 9926.505 0.779 2.222 0.066 155.000 69.818 12.870
 Minimum 3.731 0.423 -0.027 -0.266 0.000 0.000 0.000 0.000
 Std. Dev. 3708.635 848.918 0.100 0.209 0.006 13.023 7.499 1.077
 Skewness 6.007 8.576 2.778 6.393 5.693 8.181 6.559 9.124
 Kurtosis 52.096 87.553 14.786 60.349 52.081 85.894 51.626 96.567  
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 Table 2  Estimation results (whole sample) 

Model Spec Dep var Const / [s.e.] Size / [s.e.] Dummy BIO Regr.1 (lag) Est / [s.e] Regr.2 (lag) Est / [s.e] Regr.3 (lag) Est / [s.e]

1a FE log MKTV 5.665*** 3.285*** - log RDREV (2) 0.089*** - - - -
[0.081] [0.910] [-] [0.024] [-] [-]

1b FE log MKTV 5.400*** 3.354*** - log RDREV (2) 0.069*** log PAT (0) 0.211*** - -
[0.088] [0.898] [-] [0.024] [0.036] [-]

1c FE log MKTV 5.439*** 2.957*** - log RDREV (2) 0.075*** log PATW (0) 0.485*** - -
[0.084] [0.894] [-] [0.024] [0.064] [-]

2a FE log IR 0.148*** -0.100 - log RDREV (2) 0.004* - - - -
[0.007] [0.086] [-] [0.002] [-] [-]

2b FE log IR 0.137*** -0.012 - log RDREV (2) 0.009** log PAT (1) 0.003 - -
[0.011] [0.092] [-] [0.003] [0.003] [-]

2c FE log IR 0.143*** -0.024 - log RDREV (2) 0.008** log PATW (1) 0.004* - -
[0.010] [0.091] [-] [0.003] [0.002] [-]

3 FE log PE 3.445*** -1.988** - log IR (0) 0.797*** - - - -
[0.048] [0.801] [-] [0.251] [-] [-]

4a RE log PE 3.961*** -1.965*** 1.340*** log RDREV (2) 0.181*** - - - -
[0.152] [0.695] [0.227] [0.036] [-] [-]

4b RE log PE 4.219*** -1.113 1.726*** log RDREV (2) 0.255*** log PAT (1) -0.142*** - -
[0.178] [0.760] [0.271] [0.048] [0.028] [-]

4c RE log PE 3.914*** -2.074*** 1.299*** log RDREV (2) 0.172*** log PATW (1) 0.099** - -
[0.155] [0.697] [0.229] [0.036] [0.048] [-]

4d RE log PE 3.917*** -1.935*** 1.299*** log RDREV (2) 0.173*** - - log PATY (1) 0.290**
[0.154] [0.694] [0.229] [0.036] [-] [0.121]

4e RE log PE 3.886*** -2.022*** 1.272*** log RDREV (2) 0.166*** log PATW (1) 0.088* log PATY (1) 0.263**
[0.156] [0.697] [0.230] [0.036] [0.053] [0.123]  
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Table 3  Estimation results (pharma sample) 

Model Spec Dep var Const / [s.e.] Contr / [s.e.] Dummy 85 Regr.1 (lag) Est / [s.e] Regr.2 (lag) Est / [s.e] Regr.3 (lag) Est / [s.e]

1a FE log MKTV 4.829*** 6.065*** 1.996*** log RDREV (3) 0.152** - - - -
[0.078] [1.589] [0.070] [0.069] [-] [-]

1b FE log MKTV 4.513*** 8.009*** 1.753*** log RDREV (3) 0.140** log PAT (2) 0.370*** - -
[0.081] [1.526] [0.071] [0.066] [0.038] [-]

1c FE log MKTV 4.661*** 6.770*** 1.804*** log RDREV (3) 0.144** log PATW (2) 0.652*** - -
[0.079] [1.546] [0.073] [0.067] [0.086] [-]

2a FE log IR 0.090*** -0.038 0.011** log RDREV (1) 0.021*** - - - -
[0.003] [0.082] [0.004] [0.003] [-] [-]

2b FE log IR 0.088*** -0.010 0.009** log RDREV (1) 0.008* log PAT (1) 0.004** - -
[0.004] [0.083] [0.004] [0.004] [0.002] [-]

2c FE log IR 0.089*** -0.023 0.009** log RDREV (1) 0.008* log PATW (1) 0.010** - -
[0.004] [0.082] [0.004] [0.004] [0.005] [-]

3 FE log PE 3.091*** 0.140 0.116** log IR (1) 0.889** - - - -
[0.063] [0.956] [0.050] [0.412] [-] [-]

4a RE log PE 3.248*** -0.906 0.139*** log RDREV (2) 0.566*** - - - -
[0.102] [1.001] [0.050] [0.190] [-] [-]

4b RE log PE 3.290*** -0.916 0.208*** log RDREV (2) 0.570*** log PAT (2) -0.103*** - -
[0.103] [0.995] [0.053] [0.190] [0.026] [-]

4c RE log PE 3.280*** -1.026 0.118** log RDREV (2) 0.642*** log PATW (1) 0.107** - -
[0.093] [1.008] [0.054] [0.184] [0.056] [-]

4d RE log PE 3.191*** -0.761 0.139*** log RDREV (2) 0.599*** - - log PATY (1) 0.486***
[0.102] [0.993] [0.049] [0.188] [-] [0.146]

4e RE log PE 3.244*** -0.872 0.131*** log RDREV (2) 0.661*** log PATW (1) 0.097* log PATY (1) 0.476***
[0.094] [1.005] [0.053] [0.184] [0.056] [0.162]  


