
Evaluation of a tool for Java structural specification
checking

Anton Dil
The Open University, United Kingdom

Walton Hall
MK7 6AA

+44 (0)1908 659225
a.dil@open.ac.uk

Joseph Osunde
The Open University, United Kingdom

Walton Hall
MK7 6AA

+44 (0)1908 652581
joseph.osunde@open.ac.uk

ABSTRACT
Although a number of tools for evaluating Java code functionality
and style exist, little work has been done in a distance learning
context on automated marking of Java programs with respect to
structural specifications. Such automated checks support human
markers in assessing students’ work and evaluating their own
marking; online automated marking; students checking code
before submitting it for marking; and question setters evaluating
the completeness of questions set. This project developed and
evaluated a prototype tool that performs an automated check of a
Java program’s correctness with respect to a structural
specification. Questionnaires and interviews were used to gather
feedback on the usefulness of the tool as a marking aid to humans,
and on its potential usefulness to students for self-assessment
when working on their assignments. Markers were asked to
compare the usefulness of structural specification testing as
compared to other kinds of support, including syntax error
assistance, style checking and functionality testing. Initial results
suggest that most markers using the structural specification
checking tool found it to be useful, and some reported that it
increased their accuracy in marking. Reasons for not using the
tool included lack of time and the simplicity of the assignment it
was trialled on. Some reservations were expressed about reliance
on tools for assessment, both for markers and for students. The
need for advice on incorporating tools in marking workflow is
suggested.

CCS Concepts
• Applied computing~Computer-assisted instruction • Software
and its engineering~Software testing and debugging

Keywords
Open Distance Learning; Virtual Learning Environment;
Automated Code Assessment; Software tools

1. INTRODUCTION
This paper reports on a pilot study of a marking tool on our
institution’s second year Java module, which uses a blend of
online and offline teaching resources and is delivered to about
1400 primarily part-time and employed students per year via
distance learning. Assignments are set by a small module team,
who provide a written, indicatory marking guide to a separate
group of about 50 tutors. Tutors provide written feedback to
students on their submissions via an electronic submission system.
Tutors are often also employed elsewhere as educators and have
their own marking styles, which we moderate via monitoring
procedures. We believe that the use of static and dynamic
software testing tools is important for both markers and students
to gain familiarity with industry-standard approaches.

Authors such as Hattie [1] see assessment as an opportunity to

provide feedback and, in this initiative, we are also exploring
opportunities for feedback via automated marking of formative
assessments in our virtual learning environment (VLE), Moodle.
It is widely acknowledged that in teaching large cohorts, as in
Massive Open Online Courses (MOOCs), automation can be
particularly useful, for quick feedback, self-assessment and
greater availability [2].
For automated assessment, the mode of specification has much to
do with the quality of the solution [3]. However, interpretation of
code specifications often proves difficult for beginners due to the
formal vocabulary required and understanding of the syntactic and
structural features of languages [4,5]. Natural language
specifications are ambiguous and this is a major cause of incorrect
implementations [6].
Regular expressions have commonly been used to check
conformance to functionality requirements [7] while more general
frameworks for testing have evolved from Hoare-Floyd logic [8],
in which assertions about a program’s state are made.
Specification may be expressed externally to a program, or may
be formally incorporated in language design, for example, in
Design By Contract as expressed in the Eiffel language [9]. There
are also language-independent specification languages, which
may be bound to different implementations to test correctness, for
example interface description languages are used to ensure
compatibility of components in distributed software systems,
which may be implemented in multiple languages.
Formal specifications, which provide mathematical robustness,
have been used in safety critical systems [10].

However, in the context of an introductory programming module,
we are not keen to add to our students’ workload by teaching
additional terminologies and techniques for program specification.

Király et al. [11] describes the implementation of specification
testing on a MOOC platform, incorporating structural, style and
functionality tests via a cloud service. This has disadvantages of
cloud service cost, potential issues with availability of the service
and hard-coding of specifications.

CourseMarker is a platform supporting submission and marking
of assignments that includes a variety of similar correctness
checks [12]. The authors have shown that the automated marking
is on a par with human marking and accepted by students.

Insa and Silva [13] have developed a library and workbench for
automated assessment called ASys, including structural testing,
based on verifying properties of students’ code. The software uses
a graphical interface to allow a user to drive the creation of a test-
harness class.

Our aims are very similar to those of the aforementioned
platforms. However, although tools exist to assist with many of
these assessments, e.g. functionality testing through JUnit in Java
[14] and style checking through tools such as Checkstyle [15] and

PMD [16], structural checking is less commonly available,
particularly in Java, and so is the focus of this study. Our tool is
therefore similar to that described in [11] but we have initially
focused on structural testing. Many other aspects of correctness
may be checked by assessment software, including efficiency and
simplicity [7, 12, 13], but these will be addressed in future work.

2. STRUCTURAL SPECIFICATIONS
By structure we mean that a solution provides various externally
and internally visible features, such as methods or fields, rather
than that it conforms to a particular behaviour or functionality.

To ensure that students understand the vocabulary of the Java
language, some assignments we set prescribe these structural
features of solutions. This helps to ensure that markers will
receive relatively constrained responses, which assists
comparability of work and scalability of marking. This paper
particularly concerns marking prescriptive assignments of this
kind, although we also set open-ended questions to allow students
to explore their own approaches to solving problems.

Whilst Balzer at al. [17] state that ‘a specification is a description
of what is desired, rather than how it is to be realized’, testing
structural correctness allows us to check for correct use of
language features, which is important pedagogically. We
nevertheless follow the principle that specifications should be
operational, i.e. formal enough to enable automated testing of
whether a proposed implementation meets the specification.

As in [13] our tool makes use of a specification file, but in our
case this does not require generation of a separate Java test-class.
Our structural specifications can be hand-edited quite simply or
may potentially be generated by other means. Our structural tests
are not intended to be exhaustive; rather they cover features of
code that we would normally expect tutors to comment on in
students’ solutions.

Another difference in our work is that we test not only for the
presence of required features, but for the absence of some features
on grounds of object-oriented programming style, even though
they would not affect the functionality of students’ code. This is
implicit, rather than specified on an individual assessment basis.

For our purposes, structural, functional and stylistic correctness all
initially require that a student’s code compiles successfully, as this
facilitates automation.

Structural correctness is also required for unit testing code to
compile, so a key purpose of our tool is to determine if unit tests
could succeed, which is important for fully automated online
testing. Conversely, code that appears to behave appropriately
under unit tests does not necessarily meet structural requirements,
although sufficiently careful unit testing might reveal this.

2.1 Attitudes towards marking tool support
A further aim of this work is to explore attitudes towards tools as
assistants to markers, and for fully automated marking. There is
evidence of broad acceptance in the context of automated
marking, for example [2] and [12] report on the benefits of the
objectivity of automated feedback and regular assessment of
progress for students, however issues such as the specificity of
feedback that should be provided and the appropriate focus or
weighting of marking are less clear.

Whereas adoption of automated marking assumes accuracy of the
tools is high, our tool-supported marking process affords us the
chance of exploring how tools might be usefully incorporated into
a more human-focused marking process. Other authors have

assumed that question setters would determine the weight
assigned to various aspects of correctness, but in our context,
there has traditionally been a degree of latitude expected in marks
awarded and marking guides are indicatory, so we wished to
explore markers’ attitudes towards different aspects of correctness
and how they should be weighted. Our tools’ output for markers is
advisory and accompanies our written marking guide.

3. METHODOLOGY
Our project aims to involve tutors on our Java programming
module through a collaborative process in the design of code
marking tools, and to gather feedback on attitudes towards tools
for marking support, as well as for student use, via online forum
interactions, VLE usage data, surveys and interviews. We cannot
require tutors or students to take part in evaluation of prototype
tools, therefore our participants are volunteers.

In assessing attitudes towards tools, we have initially concentrated
on four aspects of code correctness: Syntax, Functionality and
Style, as the most common aspects included in other similar tools
[12], and Structure, which is less commonly included.

A BlueJ plugin [18] was developed to integrate the structural
checking tool into the module coding environment, for tutor use.
The tutor receives detailed output describing features of a
student’s solution and where it departs from the expected
specification. Occasionally, tutors have to fall back on manual
inspection of the students’ code, due to non-compilation of a
solution, which is to be expected.

Tutor use of the BlueJ plugin was supported via online forums,
and the tool was updated several times during the module
presentation following early feedback on usability issues. These
initial informal discussions informed the design of an online,
anonymous survey, which was open to all tutors, whether they had
used the marking tool or not. In addition to providing a forum for
tutors who chose not to participate in the trial of the marking tool,
the online survey allowed us to pose some generic questions about
how tutors mark code, about marking tools, and the relative utility
of various resources we provide and might provide in future.

Tutors were asked to rate the utility of syntax error help, structural
testing, functionality testing and style checking tools, to
themselves, and to students. Use of the marking tool was also
investigated, via 20 questions of which 13 were closed response
and 7 were open response, providing an opportunity for tutors to
clarify reasons for their answers to closed questions as well as
provide more general feedback on marking and tools.

Example output from the structural checking code, repurposed for
deployment on our VLE via CodeRunner [19] questions, is shown
in Figure 1.

Figure 1 CodeRunner output for a failed structural check.

Twenty responses from tutors were received, including eight from
tutors who had used the structural checking tool and twelve from
tutors who had not.

Due to tutor availability, subsequently six tutors out of the eight
who had used the structural checking tool were interviewed using
a semi-structured script, to get a deeper understanding of attitudes
towards the tool and marking tools in general. Tutors were asked
about their experience in using the tool, issues they encountered,
and how it affected their marking. An inductive analysis of the
interview transcripts was then performed to draw out the
commonly occurring themes. Tutor attitudes towards student use
of the structural marking tool and related tools was also explored.

Although the tool was run by about a third of our cohort in our
online environment, via a formative CodeRunner quiz, this paper
is concerned only with the tutors’ appraisals of the proposed
marking tools.

4. RESULTS
4.1 How the marking tool was used
An early result of this investigation was that the need for the
question setter to write a structural specification served as a cross-
check on the completeness of the question we were setting. This
was unexpected, but ultimately very useful.

Depending on when the tool was used in the marker’s workflow,
it functioned either as a backup check that no structural errors in
the student’s solution had been missed, or as a way to locate parts
of student’s code to be commented on before marking by hand.

Tutors realised that the tool would not be very helpful if the
submitted code was very far off the mark to begin with, however,
it was acknowledged that this is where we need the human marker
to take the lead.

Students were said to seldom submit code that does not compile,
suggesting that they may see compilation errors as a sign of
failure, and they prefer not to submit incomplete work, though
they could gain marks by doing so.

Averaged time to mark for tool users was 5-10% more than for
non-tool users, but there was not enough data to infer statistical
significance of this difference.

Six of eight tutors said that the tool was ‘somewhat likely’ or
‘very likely’ to spot errors they’d have missed.

Seven of eight tutors said that they would be ‘quite likely’ or
‘very likely’ to recommend the tool to other tutors. For these
tutors, improved accuracy was valued, while increased time to
mark was the main concern of the one tutor ‘not likely’ to
recommend the tool.

4.2 Ratings of tools by tutors
Table 1 shows aggregated ratings of software tools by the 20
tutors surveyed (i) to them as markers and (ii) their judgement of
the tool’s usefulness to students, based on a Likert scale. Only the
structural checking tool was actually tested by a proportion tutors,
so the responses are primarily based on tutors’ perception of the
tools’ potential usefulness.

Table 1 Tool utility to tutors and students, judged by tutors

(i) Tool use to tutors E V+E M+V+E

Unit tests .26 .74 .74

Structural checking .21 .47 .69

Style checking .20 .45 .65

Syntax error help .16 .37 .53

(ii) Tool use to students

Unit tests .26 .58 .79

Style checking .22 .39 .72

Syntax error help .20 .40 .70

Structural checking .17 .33 .72

The table entries are ordered by Extremely, Very + Extremely and
Moderately + Very + Extremely responses. (Other available
responses were: ‘Not at all useful’, ‘Somewhat useful’ and
‘Moderately useful’.)

None of the code marking tools were rated ‘extremely’ useful by
the majority of respondents, indicating that whilst they are all of
some interest, they are not core to requirements; however, this is
not unexpected given the traditional nature of our delivery being
reliant on a printed text and offline software activities. Part of our
aim is to develop these tools for online use by students in contexts
where tutors are not available, for quick feedback.

The higher rating of unit tests as compared to structural checking
may indicate a misunderstanding on tutors’ part of how unit
testing would work in practice, because it is not possible in
general to perform unit tests unless structural tests are successful.
We attribute this to familiarity with the idea of unit testing as
compared to the idea of structural checking, as well as to the
preponderance of non-tool users in the respondents.

Considering the ‘Extremely useful’ column, these tools are
considered of more or less equal utility to tutors and students, as
judged by tutors. When combining the top two utility ratings,
tutors considered all of these tools to be more useful to them than
they are to students.

4.2.1 Correlations and associations
Ratings of unit testing, structural checking and style checking
were all correlated at a statistically significant level (Spearman’s
rho, p < 0.01, two-tailed sigma). The exception is that syntax error
help is not well correlated with other tools’ utility. This is
expected, since tutors should not particularly need this tool, which
is more appropriate for students.

The highest correlation was for utility of unit testing versus
structural checking, which was rho = 0.801 for student use. The
95% confidence interval for this result is 0.556 to 0.918,
indicating a moderately high degree of correlation.

Tutor ratings of structural checking were also significantly
correlated between use for self and use for students (Somers’ d =
0.625, p < 0.001). Thus, the relative utility of the tool itself may
be less significant than the predisposition of the tutor towards
tools. Higher scores were found for Unit testing (d = 0.687, p <
0.001) and Style checking (d = 0.706, p < 0.001).

These results suggest that if a tutor rates one of these tools as
useful, they will also rate the others as useful, and vice versa,
whether for their own use or for student use.

Interview analysis provided some explanation for these
dispositions for or against tools, and this is explored in the next
section.

4.3 Themes in the interview data
Six experienced tutors who had used the structural checking tool
were interviewed. The inductive analysis of interview transcripts
led to the themes in Table 2, with both positive and negative
views expressed under each theme.

Table 2 Themes around tool use by tutors

Theme Negative Positive

Time available to
engage with the
tool

No time to use,
slows marking
down; impacts on
students’ time

Worth investing the
time

Quality of
marking

No need for
complete accuracy;
could detract

Accuracy matters;
improves marking
and feedback

Attitude towards
tools

Over-reliance on
tools is an issue

Tools help us do our
job better

Focus of
teaching and
testing

There are other
things to provide
feedback on

Correct structural
specification (also)
matters

Need for a tool The task is too
simple to warrant
use of a tool

Even with simple
tasks, we make
mistakes tools can
find

There are overlapping issues across these themes, which are now
described:

Time: Tutors weighed up the utility of a tool with respect to the
time it takes to use it and the increased accuracy it may bring to
their marking. For some tutors this trade-off was worthwhile; for
others it was not. Some of the time cost may be accounted for by
familiarity or the way in which the tool was incorporated in the
marking workflow.

In the case of students, some tutors worried that using a tool
would add to their workload.

Accuracy: Some tutors suggested that the tool would not spot
errors they wouldn’t, or that the difference the tool might have
made was small. This relates to the complexity of the marking
task also.

Some appreciated confirmation of their own accuracy. Indication
of having missed an error was embarrassing to some, while for
others it proved that this was what tools were good for. This was
in spite of tutors having spotted similar lapses in other tutors’
marking when they were undertaking peer monitoring duties.

For some it is important to provide feedback on all defects that are
noticed, because commenting on them should help students
perform better in future. However, some feared discouraging
students by pointing out all of their failings.

Attitude towards tools: Some tutors believed that they did not
need the tool, as they would spot errors anyway, or that over-
reliance on technology was problematic, because viewing
automated feedback would lead to loss of critical awareness or a
bias in marking focus.

Likewise, tutors were concerned that students may come to rely
on a tool like this if they used it regularly, an issue also reported
by Chen [20].

Focus of teaching and testing: The structural checking tool
highlights a particular aspect of code quality, but this may be

misleading if other areas of code quality are not indicated. There
is a fear that a tool might direct attention too much towards certain
areas and away from others, including aspects that are less
amenable to tool support.

Of course, the intention is not to exclude hand-marking by
humans, but to support marking by humans of a particular aspect
of code quality that is amenable to automation. The intention is to
provide support for marking other aspects of code quality that
may be automated, eventually, and tutors also supported this idea.

Need for a tool: If the assignment is seen as simple to mark then
the need for tool support is less clear. However, this also suggests
that if the task were more complex, tutors would be more open to
tool use. This is therefore a separate issue as to whether the
marker thinks tools are worth using at all, without reference to the
complexity of the task.

Our thematic analysis shows similar concerns to those expressed
in Davis’ technology acceptance model [21] in which users
balance perceived usefulness with perceived ease of use, but it
also raises pedagogical questions about tool use and questions
about markers’ judgement of their own abilities.

4.4 Common errors found by the tool
We found that the structural checking tool was able to detect
errors that would prevent unit tests from succeeding and to find
errors that markers should comment on for pedagogical reasons.
Misspelled variable and method names, use of wrapper types for
primitive types, incorrect access modifiers and misuse of the
static modifier were all cited as errors that markers had not
noticed when reading over students’ code.

Some detected errors may result in code that passes unit tests. An
example we saw was failure to override an equals method. In
this case, our own unit tests had failed to check for overloading
rather than overriding and all the functionality tests were passed.

Likewise, use of the static modifier could easily be missed by
a unit test checking for functionality of a method, and may
indicate students reverting to a procedural rather than an object-
oriented style of coding.

This is an acknowledged hazard [12] of automated testing – it
relies on formulation of appropriate tests, and this applies
particularly to unit testing. However, we have found that
structural specification may be made more complete with less
effort.

5. CONCLUSIONS
A prototype structural specification checking tool was developed
and tested on a distance learning Java programming module with
a large cohort and 50 markers. In addition to a BlueJ plugin tool, a
version of the tool was deployed on the module’s VLE, where it
was used extensively.

Markers who used the tool observed that it helped them find
errors in students’ work, even if it slowed them down somewhat,
though some indicated that a changed workflow might actually
lead to shorter working times when using the tool.

Tutors who did not use the tool cited lack of time or the need for
the tool on a simple assignment, and tended to indicate that they
would not miss errors in students’ code; however, we found
several kinds of errors commonly missed by markers.

Tutors who expressed positive views of the tool also tended to
consider it would be useful to students, whilst those who thought
it of less value also considered it of less value to students. Tutors
tended to favour use of various tools, or none.

Some tutors reported that the tool acted as a self-assessment of
their marking, depending on the workflow adopted.

For student use, tutors expressed concerns over workload and
direction of attention towards particular correctness concerns.

We noted that structural specification checking should succeed for
unit testing to take place and that it may detect errors that unit
tests have not catered for.

Discussing tool use has resulted in some preliminary guidelines
for use of tools in supporting human markers: Marking tools
should not impact too much on tutors’ time to mark, but advice on
workflow may help to mitigate this issue. We also need to clarify
which aspects of correctness concern us, and how they should be
weighted, as tutors expressed different points of focus in their
own marking. By providing data on commonly missed errors in
students’ code, we can raise awareness of where tools can out-
perform human markers, even in the context of simple
assignments. Some aspects of code quality may be best suited to
human feedback, so it will be important to clarify which aspects
of code we want our markers to focus on and which to delegate to
tool support. Finally, it is important that we emphasize that
markers (and students) should not use marking tools as a
substitute for their own appraisal of a solution’s correctness.

Future work will explore approaches to automated generation of
specifications, as well as gather more quantitative data on how
often tutors miss errors in code, and what kinds of mistakes
students most commonly make.

6. ACKNOWLEDGMENTS
The authors acknowledge the support of the Open University’s
eSTEeM centre for STEM pedagogy.

7. REFERENCES
[1] J. Hattie, Visible Learning for Teachers. Routledge,

2012.

[2] C. MacNish. “Java Facilities for Automating Analysis,

Feedback and Assessment of Laboratory Work.”
Computer Science Education. 10, 2 (2000), 147–163.
DOI:https://doi.org/10.1076/0899-3408(200008)10:2;1-
C;FT147.

[3] R. S. Pressman, Software Engineering: A practitioner’s

approach, 3rd ed. McGraw-Hill, 1992.

[4] Y. Qian and J. Lehman, “Students’ Misconceptions and

Other Difficulties in Introductory Programming: A
Literature Review,” ACM Trans. Comput. Educ., vol. 18,
no. 1, pp. 1:1–1:24, 2017.

[5] Robins, A. et al. 2003. Learning and Teaching

Programming: A Review and Discussion. Computer
Science Education.

[6] M. Bano, “Addressing the challenges of requirements
ambiguity: A review of empirical literature,” 5th
International Workshop on Empirical Requirements
Engineering, EmpiRE 2015 - Proceedings. pp. 21–24.

[7] V. Pieterse, 2013. Automated Assessment of

Programming Assignments. 3rd Computer Science

Education Research Conference on Computer Science
Education Research. 3, April (2013), 45–56.
DOI:https://doi.org/http://dx.doi.org/10.1145/1559755.15
59763.

[8] C. A. R. Hoare, “An axiomatic basis for computer

programming,” Communications of the. ACM, vol. 12,
no. 10, pp. 576–580, 1969.

[9] “Eiffel Software.” [Online]. Available:

https://www.eiffel.com/values/design-by-contract/.
[Accessed: 25-May-2018].

[10] B. Potter, J. Sinclair, and D. Till, “An introduction to
formal specification and Z, Prentice Hall”, 1996, 2nd ed.
Prentice-Hall, 1996.

[11] S. Király, K. Nehéz, and O. Hornyák, “Some aspects of
grading Java code submissions in MOOCs,” Research in
Learning Technology, vol. 25, Jul. 2017.

[12] C. Douce, D. Livingstone, and J. Orwell, “Automatic
test-based assessment of programming,” Journal on
Educational Resources in Computing, vol. 5, no. 3, pp.
4–20, 2005.

[13] D. Insa and J. Silva, “Semi-Automatic Assessment of

Unrestrained Java Code: A Library, a DSL, and a
Workbench to Assess Exams and Exercises,” Proc. 2015
ACM Conf. Innov. Technol. Comput. Sci. Educ. - ITiCSE
’15, no. January 2015, pp. 39–44, 2015.

[14] “Junit.” [Online]. Available: https://junit.org/junit5/.
[Accessed: 25-May-2018].

[15] “Checkstyle.” [Online]. Available:
http://checkstyle.sourceforge.net/. [Accessed: 25-May-
2018].

[16] “PMD an extensible cross-language static code
analyzer.” [Online]. Available: https://pmd.github.io/.
[Accessed: 25-May-2018].

[17] R. and N. G. Balzer, “Principles of Good Specification
and Their Implications for Specification Languages,”
Software Specification Techniques, pp. pp. 25–39., 1986.

[18] “Bluej Extensions.” [Online]. Available:
https://bluej.org/extensions/extensions.html. [Accessed:
25-May-2018].

[19] R. Lobb and J. Harlow, “Coderunner,” ACM Inroads,
vol. 7, no. 1, pp. 47–51, 2016.

[20] P. M. Chen, “An automated feedback system for
computer organization projects,” IEEE Trans. Educ., vol.
47, no. 2, pp. 232–240, 2004.

[21] F. D. Davis, “Perceived Usefulness, Perceived Ease of
Use, and User Acceptance of Information Technology,”
MIS Q., vol. 13, no. 3, pp. 319–340, 1989.

