The impact of scaffolding on learning physics: is there a gender difference?

Hillary Dawkins, Holly Hedgeland, Pam Budd, Jimena Gorfinkiel, Victoria Pearson, and Sally Jordan

Goals:

- Identify elements of question structure which may be disadvantaging female students
- 2. Test the use of scaffolding as a potential solution

Identifying bias: What do these questions have in common?

Addressing bias: Can scaffolding play a role?

Q1 Scaffolding level:

An astronaut playing golf on the Moon hits a ball so that it is initially moving with a speed of $u = 8.00 \text{ m s}^{-1}$ at an angle of $\theta = 30^{\circ}$ to the horizontal. In the following, the magnitude of the acceleration due to gravity at the Moon's surface, $g_{\rm M}$, is approximately 1.62 m s^{-2} .

(a) Make sketches of the vertical components of displacement, s_{v} , and velocity, v_{v} , versus time, t. Label the sketches with appropriate equations for s_{v} and $v_{\mathbf{v}}$.

(6 marks)

(b) Assuming the surface of the Moon is flat in the vicinity of the astronaut, calculate how far the ball travels.

(4 marks)

A significant difference p = .013

Not a significant difference p = .46

