

Cooling of the warm-hot intergalactic medium

Dark matter (simulations by Springel et al. 2006)

Dolag et al. (2006)

Main sequence relation for a sample of 7000 GAMA spirals

- with morphological classification
- z < 0.13
- DM halos > 10¹² M_☉ isolated and group spirals

Grootes, Tuffs, Popescu et al (2016)

Cooling of the warm-hot intergalactic medium through dust

Dark matter (simulations by Springel et al. 2006)

Dolag et al. (2006)

Dwek & Werner (1981)

Dust/gas=0.006 Solar metallicity

> hot plasma cools primarily in the FIR via inelastic collisions with grains

Viewing the condensation of the warm-hot IGM into galaxies

Detection of diffuse dust emission in the integroup medium by Natale, Tuffs, Popescu et al. (2010)

- (L(FIR)/L(Xray) ~ 50)
- efficiency of cooling through dust due to presence of stellar sources of grains in the intergalactic medium
- local universe analogue of feedback processes in early universe

Spitzer image of Stephan's Quintet (160 micron contours overlaid on X-ray image)

Detection of intergalactic FIR emission confirmed with AKARI by Suzuki et al. (2011)

How are galaxies connected to the Cosmic Web?

First detection of FIR emission from an extended HI disk

ISOPHOT mapping of NGC 891

Popescu & Tuffs (2003)

Extended HI disk is not primordial

Swaters et al. (1997)

Measuring the dust content of the IGM

Chandra image of Hydra A

Prediction for the integrated flux density of a cluster due to grains in the IGM infalling into a cluster.

- 3 10^9 Msolar
- half solar metallicity
- dust/gas=0.005
- 50x50 kpc

5-sigma 1 hour in a field of 1 arcmin² corresponds to 50kpcx50kpc at z=0.1

Summary: SPICA/SAFARI's surface brightness sensitivity in the far-infrared will:

- provide a view of the baryonic (gaseous) component of the cosmic web
- establish how the gas in galaxies is connected to the gas in the cosmic web
- provide a definitive measurement of the dust content and opacity of the intergalactic medium
- establish the propensity of galaxies to form out of the cosmic web and the relation between luminous and dark matter in the web