The dynamic ISM: the fuel and exhaust of galaxies

Floris van der Tak & Sue Madden

for the SPICA nearby galaxies working group:

Hidehiro Kaneda, Mikako Matsuura, Albrecht Poglitsch, Eduardo González-Alfonso, Ciska Kemper, Jonathan Braine, Matt Malkan, Russ Shipman, Sylvain Bontemps, ...

The ISM of galaxies: Current key questions

What mechanisms promote and inhibit star formation? How to disentangle them in different galactic environments? so far: mid/far IR lines limited to bright (regions in) galaxies SPICA: full suite of lines

How do galaxies acquire dust; how do dust properties evolve? so far: broadband IR limited to normal galaxies SPICA: probe low-Z / dwarf galaxies

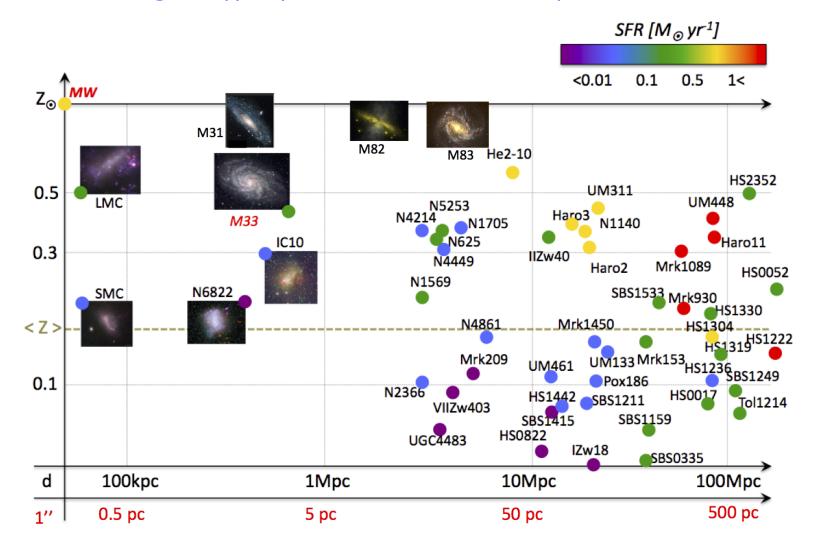
What is the nature of the 'dark gas' in galaxies? so far: use CO and dust as tracers of cold H₂ SPICA: use HD, C⁺ and full line suite

Many more SPICA science cases possible; your input needed for discussion! SRON

SPICA general strategy

Environmental dependence of star formation rate main gas reservoir dust composition / mass

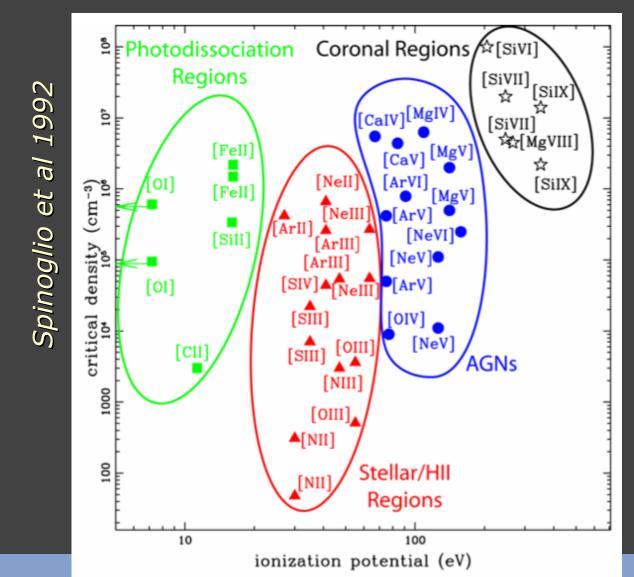
Spectral maps of nearby galaxies in mid & far infrared ranges characterize physical and chemical conditions in nuclei, disks, arms, halo even interarm & intergalactic gas


Cover broad range in L, Z, SFR, type

volume-limited to ~100 Mpc (single field, $N \sim 10^4$) well-resolved to ~10 Mpc (multi field, $N \sim 100$) First complete set of dwarf galaxies (Euclid will find ~10⁵)

SPICA laboratory: the Local Universe Survey parameter space of local universe

Wide range of type, spatial resolution, Metallicity, star formation, etc...

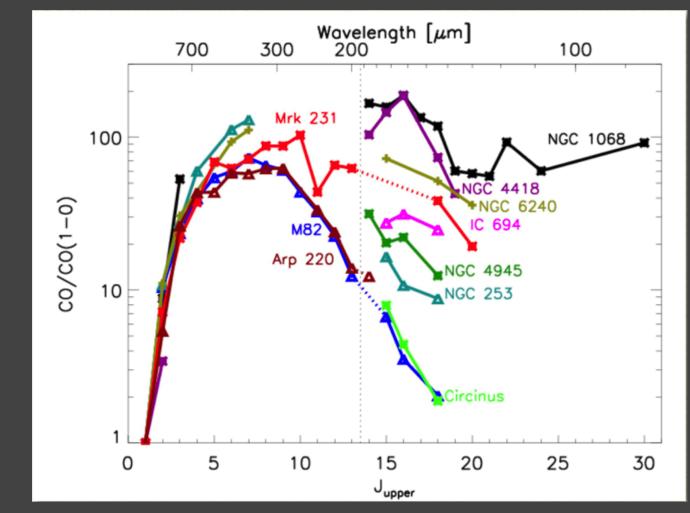


Diane Cormier

SPICA toolbox: Mid- and far-infrared lines

As good as optical lines, but without the extinction

• probe ionized, neutral, molecular, and solid phases



Molecular lines: warm dense gas

SPICA probes right part of CO ladder

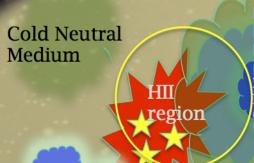
- Shock models: Flower & Pineau des Forêts 2010
- PDR / XDR models: Meijerink et al 2005, 2007

Mashian et al 2015

Key lines & features in the far-IR

Species	Wavelength (µm)	Diagnostic of
[C II]	158	star formation rate
[O I]	63, 145	UV irradiation, shocks
[O III]	88, 52	shocks; ionization source
[N II]	122 205	low-density ionized gas
[N III]	57	hardness radiation field
HD	112, 56	cold molecular gas
ОН	119, 84, 163, 53	galactic winds
high-J CO	various	energetic irradiation
H ₂ O	various	shocks
crystalline silicate	69	dust mineralogy
H ₂ O ice	62, 44	dust processing

Herschel: low S/N, scratch surface SPICA: high S/N, take full advantage


Key lines & features in the mid-IR

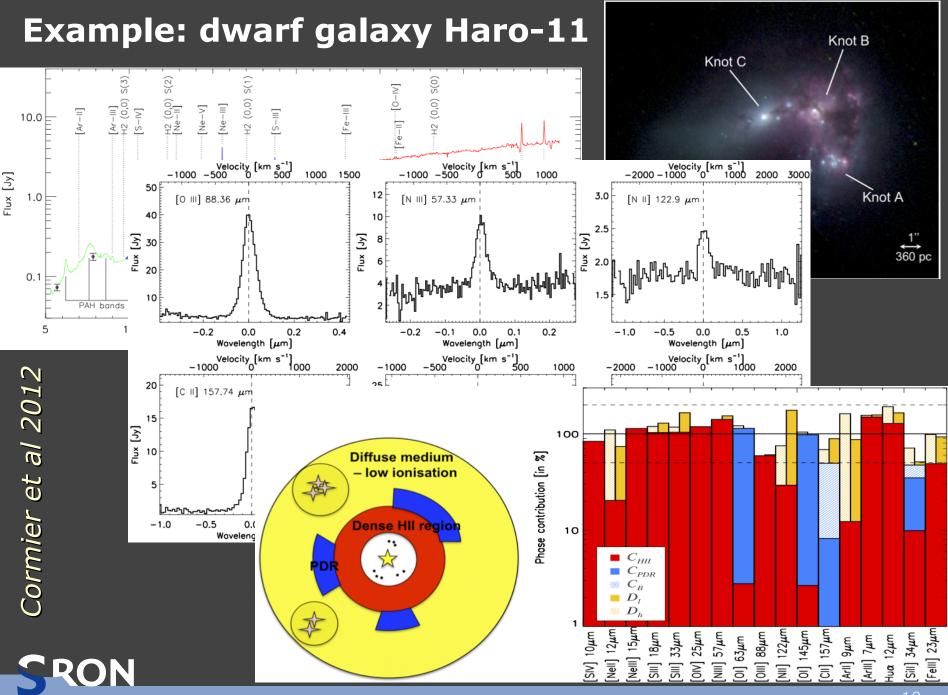
Species	Wavelength (µm)	Diagnostic of
[Si II]	35	UV irradiation, shocks
[S III], [Fe II]	18, 33; 25	shocks
H ₂	17, 28	warm molecular gas
[O IV], [Ne V]	14, 24	active nucleus
[Ne II], [Ne III]	12.8, 15.6	gas temperature
HCN, HNC	14-15	dense molecular gas
CO ₂ , C ₂ H ₂ , H ₂ O	14-15	warm molecular gas
MgS / graphite	30	dust
SiC	11.3	dust
amorphous silicate	9.7, 18	dust

Note importance of 9-18 µm range!

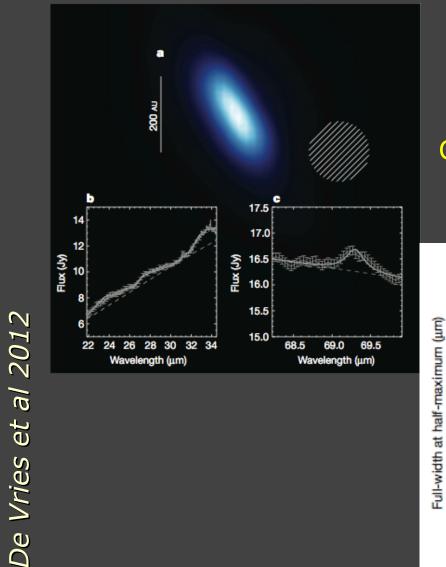
N

The Complex Multiphase ISM of Galaxies

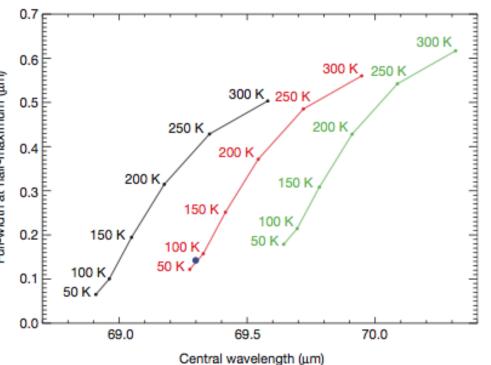
HI [CII] H₂ [CII] [CI] H₂ [CI] CO H₂ CO Dense Molecular Cloud


Warm Ionised Medium Warm Ionised Medium

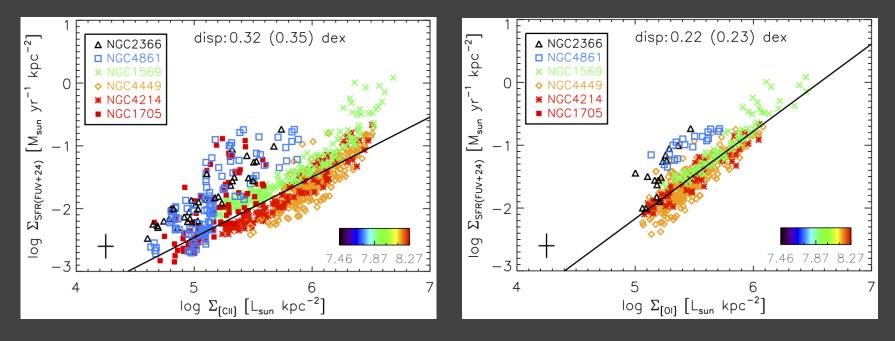
[HII] [NII] [CII]



WarmNeutral Medium

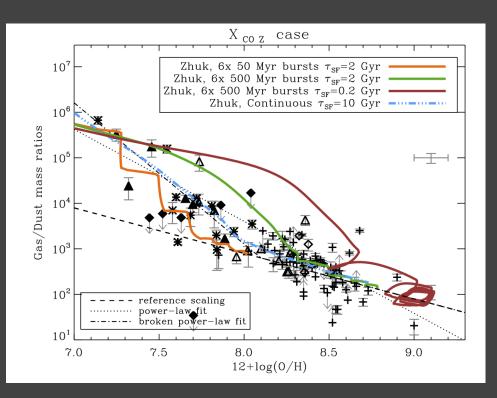

[OIII] [NIII] [NII][SHI] [NeII][NeIII]

Dust example: Forsterite in β Pic debris disk


Constrain T & Fe content far-IR features best

Goal 1: Star formation vs environment

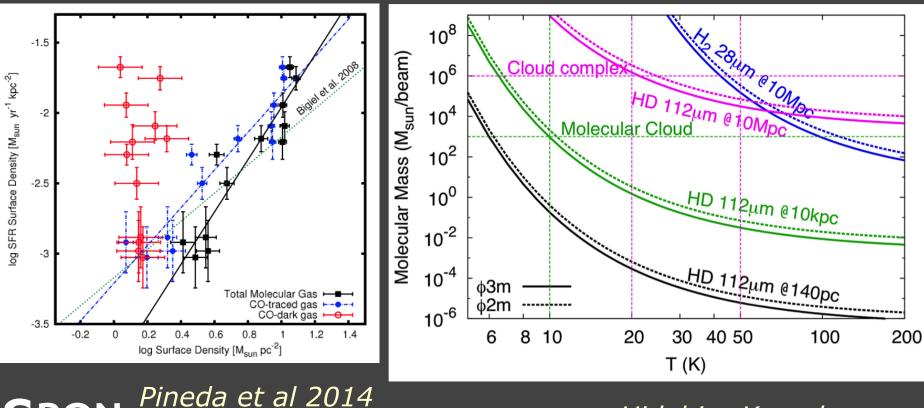
SFR varies widely among and within galaxies ... why?


- retrieve ISM properties with PDR / Cloudy models
- couple with maps of SFR (JWST), HI (SKA), stars (Euclid), cold dust (Herschel)
- cannot fully resolve: link properties statistically
- provide robust SFR estimators for high-*z* studies

[CII] and [OI] as SFR tracers: De Looze et al 2014

Goal 2: The dust evolution of galaxies

- Dust masses of lowest-Z galaxies unknown
- Herschel: suggests break in g/d ratio vs Z
- SPICA: adds dust masses at low Z
- Goal: understand how galaxies are enriched in dust



Remy-Ruyer et al 2014

Goal 3: Probing CO-dark H₂ with HD and C⁺

- Direct tracer of H₂ without X_{co}-factor uncertainty
 - needs grating sensitivity
 - main uncertainty: gas temperature (CO with ALMA)

Hidehiro Kaneda

Many other 'use cases'

Feeding and feedback of galactic nuclei (Eduardo González-Alfonso)

- Far-IR OH, H₂O lines: outflow tracers (Sturm et al)
- Fine structure lines to trace feeding of nucleus
- Crystalline silicates (Ciska Kemper)
 - probes of star formation activity and cosmic-ray flux
 - key features in 25-70 μm range
- Supernova dust (Mikako Matsuura)
 - what is role of SNe in dust production?
 - monitor SED of newly exploded SNe to trace T, M evolution
- AGB/starburst coevolution (Dave Clements)
 - how much bolometric power from obscured AGN
 - SPICA is only probe of key mid-IR range

Local group galaxies (Jonathan Braine)

- detailed connection between dust/gas properties and star formation
- e.g. LMC/SMC provides \sim pc resolution in range of Z

Elliptical galaxies (Hidehiro Kaneda)

- end points of galaxy evolution, but too faint for Herschel
- how do star formation and gas/dust reservoirs differ from spiral galaxies?

Summary science case

A big step beyond Herschel

- from 2-3 lines to multi-phase ISM
- from nuclei to full galaxies
- from special cases to statistical samples

Large impact on other studies

- SPICA's high-z program
- local star formation

Science legacy

- will know how galaxies make stars and metals
- locally and at peak of cosmic SFR

