

Galactic and Extragalactic Chemistry with SPICA

Izaskun Jimenez-Serra
(STFC ERF fellow)
&
Serena Viti
(University College London)

Unique Science with SPICA:

- Dust life cycle:
 - Organic chemistry: PAHs (not revisited since ISO!)
 - ISM Physics: Dust (Ward-Thompson's talk)
 - Ice composition (Helen Fraser's talk)
- Spectroscopy: hydrides!!!
 - HD, H2O, H2, OH, NH, NH2
- C(+), N and O probe:
 - gas physical conditions (density, temperature, UV field)
 - turbulence (kinematics of the PDR layer)

HD (@112µm): best gas mass tracer

Circumstellar disks

HD follows H2 HD sensitive to gas mass

 $M_{gas} \sim 0.05 M_{o}$

(vs. 5x10⁻⁴ M_o inferred from CO!!)

Oceans!!

H_2O (@180µm): our origins

Pre-stellar Cores (PSCs)

Circumstellar disks

0

10

Cold H₂O detected only in 1 PS and a few disks!!

-10

Science & Technology Simulations of Glycine in L1544 Facilities Council

Science & Technology Simulations of Glycine in L1544 • UCL

Science & Technology Simulations of Glycine in L1544 • UC

THz regime!!!

$H_2O(@180\mu m)$ in IRDCs??

Cold H₂O as probe of cloud-cloud collisions

C⁺(@158µm): diffuse gas in IRDCs

C⁺ probes turbulence and kinematics of gas in IRDC environment

C⁺(@158µm): diffuse gas in IRDCs

C⁺ probes turbulence and kinematics of gas in IRDC environment

Diffuse PDR gas diagnostics

H/H₂/C⁺/C/CO transitions vary in Av depending on metallicity, density, UV field, and cosmic ray ionization rate!!!

Diffuse PDR gas diagnostics

- O: present in both atomic and molecular gas
 65μm/145 μm transitions diagnostic of optical depth
- CII: a true tracer of the PDR zone if HII contribution small (<30% - Vasta et al. 2010)
- OI/CII: diagnostics of temperature, density, UV radiation field
- O→ OH → H₂O: study of the PDR transition from atomic to molecular gas by using the oxygen budget

Potential Project:

Comprehensive study of the 3D distribution of atomic/molecular gas in nearby galaxies to trace the transition from atomic to molecular gas

Motivation:

High spectral resolution observations toward single positions in a few tracers \Leftrightarrow high spatial maps in other tracers \Rightarrow lack of consistent 'ensemble' of data

Comprehensive study to determine the density and temperature structure of a galaxy

What we could address:

With 3D surveys of key transitions of OI, CII, OH and H_2O we could get the average gas contained within each component (HII, PDR, neutral) for each type of galaxy \rightarrow how do the contributions differ across types of galaxies?

HD in nearby galaxies??

UCL-CHEM

X(HD)	N_H	Т	c.r
5.3e-5	1000	50-100	1
6e-5	10 ⁴ -10 ⁵	50-100	1
6e-5	1000	50-100	10
7e-5	10 ⁴ -10 ⁵	50-100	10
1e-4	1000	50-100	100
2e-4	10 ⁴ -10 ⁵	50-100	100

If $X(HD)\sim 5\times 10^{-5}$, $n(H_2)\sim 10^3$ cm⁻³ and source size 1pc $S_{nu}(HD)\sim 150$ mJy at 50 kpc

HD detected with S/N>9 in SMC/LMC in the worst case scenario

