

Debris Disks and SPICA Uncovering Kuiper Belts

Patrick Cronin-Coltsmann University of Warwick

(NASA)

The Kuiper Belt in Context

- Radius ~ 40 AU
- Temperature ~ 50 K
- Fractional Luminosity ~ 10⁻⁷
- 4.5 Billion years old
- Would have started with much more mass
- Well below current detection limits

The Kuiper Belt in Context

- Is its mass typical for a disk its age?
- Did planetary migration cause a catastrophic clearing event?

How common are such disks?¹⁰⁻²

True analogues remain undetectable and their incidence unknown.

They are beyond our sensitivity limits.

Fundamental Limitations

- Debris disks are detected by infrared excess
- Need to know what they are in excess of
- Would need both precise knowledge of stellar emission and instrumental variation and calibration

Fundamental Limitations

SPICA has the sensitivity to reach this calibration limit.

But true Kuiper belt analogues lie behind it.

Fundamental Limitations

Resolving disks circumvents the calibration limit, but disks are as bright as the galaxies lying behind them.

Now restricted by this confusion limit.

Fundamental Limitations?

Choose high proper motion stars and difference image with snapshots from the beginning and end of the mission

A True Kuiper Belt Survey

Proper motion (arcsec/yr

- Disks must be resolved
- Star must move at least half a beam FWHM
- Detections of both sunlike and low mass stars at 100 µm
- Full Kuiper belt distribution characterisation with spectral type would require a 50 µm imager
- Only SPICA would be capable of such a survey

A Debris Disk Luminosity Function

- SPICA's sensitivity also allow for 10⁰
 a calibration limited large N
 survey
- Both new low mass disk parameter space and distant high mass disks
- Just a few minutes per star
 SAFARI could observe all stars
 where the calibration limit is
 reached
- As many stars as wanted could be observed, e.g. ~ 1000 G-type stars within 100 pc

Unprecedented statistical power could create a disk luminosity function and explore the relationship between disks and planets/metallicity/spectral type

Disks and Low Mass Stars

- Is planet formation super efficient around low mass stars?
- Historically difficult to measure disks due to low luminosity
- SPICA can measure real incidence rate to calibration limit and beyond
- Investigate whether current planet formation models are applicable to M dwarfs

Disks and Stellar Remnants

- Measured heavy element pollution in white dwarf atmospheres motion (arcsec/yr
- Believed to come from infalling circumstellar material
- SPICA could directly measure such disks or take proper motion difference images

Summary

SPICA is uniquely capable of exploring new parameter spaces in debris disk science and performing ground breaking surveys

- Explore origins of pollution in stellar remnants
- Probe disks around low mass stars
- Investigate relationship between disks and planets
- Define a luminosity function for debris disks
- Measure true Kuiper belt analogue incidence rates