

SPICA and lensed galaxies: lessons from *Herschel*

Far-IR number counts are steep at the bright end: very luminous SMGs are rare \Rightarrow simple lens selection

SPICA and lensed galaxies: lessons from Herschel

Remember that with SPICA lenses will be unresolved (similarly to *Herschel*)

A variety of lines are accessible to SMI and SAFARI

Herschel PACS OT2 survey of 13 lenses to probe ISM conditions: targets

Most sources are undetected, so use stacking (45 SMGs) including 32 in the archive, to get deeper

Wardlow et al. 2017

We reached typical (stack!) depths of ~few x10⁻¹⁸ W/m². Need to go deeper = SPICA!

	[O I]63 µm			[S III]33 µm		
Name	Line flux $(10^{-18} \text{ Wm}^{-2})$	Line λ_{obs}^{a} (μ m)	Continuum ^b (mJy)	Line flux $(10^{-18} \text{ Wm}^{-2})$	Line λ_{obs}^{a} (μ m)	Continuum ^b (mJy)
G15v2.19	<35.3	128.07	1044 ± 157			•••
G09v1.40	<81.0	195.29	<549			•••
G12v2.257	•••	•••	•••	<1 0.5	106.84	<39
NGP.NA.144	<44.4	202.30	<312	<20.6	107.21	<76
NGP.NA.56	<34.0	208.62	<245	<24.5	110.55	<94
HXMM01	<12.7	208.94	<92	<13.7	110.72	<52
G09v1.124	•••	•••	•••	<15.8	114.17	<62
G15v2.235	•••	•••	•••	<12.8	116.48	<51
G09v1.326	•••	•••	•••	<13.4	119.96	<55
NGP.NB.78	•••	•••	•••	<1 9. 1	137.64	128 ± 91
G12v2.43		•••	•••	<1 7.3	138.21	103 ± 82
G12v2.30	•••		•••	<32.4	142.60	<160
HBootes01		•••	•••	<11 .2	143.10	<55
Mean Stack ^c	1.0 ± 0.3	63.16		<0.9		•••

Wardlow et al. 2017

[OI]-63µm: on average suppressed similarly to low-z ULIRGs, but variety in different sources

Thanks to Javier Graciá-Carpio and SHINING for sharing their compilation of local data.

Wardlow et al. 2017

SPICA and lensed galaxies: lessons from Herschel

[OIV]-26µm: no evidence of AGN in the stack, but not deep enough to definitively rule out some contribution

Thanks to Javier Graciá-Carpio and SHINING for sharing their compilation of local data.

Wardlow et al. 2017

SPICA and lensed galaxies: lessons from Herschel

SMGs have high gas phase metallicity: Z≳Z_☉

Wardlow et al. 2017 See also Pereira-Santaella et al. 2017 & Rigopoulou et al. 2018

We use the [OI], [Sill] & (published) [CII] to constrain PDR (gas) parameters via modelling

Additional considerations

- [OI] self absorption
- Metallicity & AGN contribution
- HII region contribution
- Filling factors: M82 values from Kaufman et al. (1999) to estimate strength
- Optical thickness
- Differential lensing: use Serjeant (2012) to estimate effects.
- Source sizes

Wardlow et al. 2017

SPICA and lensed galaxies: lessons from Herschel

SMG PDR modelling of FS lines in tension with [CII] & CO: different regions? lensing effects? PACS misleading?

Using PDR Toolbox (Kaufman et al. 1999, 2006 models)

Wardlow et al. 2017

SPICA and lensed galaxies: lessons from Herschel

Summary

PACS observations of we fine structure & H₂ lines in some of the most apparently luminous z~2 galaxies (lensed SMGs) → mostly non-detections, to ~10⁻¹⁷ W/m².

 Stacking of up to 45 SMGs reached ≥3σ detections in [OI]63, [SiII]34 and [NIII]57µm, and nondetections in 6 other lines, down to σ~10⁻¹⁸ W/m².

 We need to go substantially deeper than σ~10⁻¹⁸ W/m² to reliably detect even highly magnified SMGs → SPICA!

There is a tension between PDR modelling results from [CII]/CO lines and FS lines for SMGs.
Only SPICA can provide the data to understand & reconcile this.