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Summary

Linear multiregression dynamic models (LMDMs), which combine a graphical rep-
resentation of a multivariate time series with a state space model, have been shown to
be a promising class of models for forecasting of traffic flow data. Analysis of flows at
a busy motorway intersection near Manchester, UK, highlights two important mod-
elling issues: accommodating different levels of traffic variability depending on the
time of day and accommodating measurement errors occurring due to data collection
errors. This paper extends LMDMs to address these issues. Additionally, the paper
investigates how close the approximate forecast limits usually used with the LMDM
are to the true, but not so readily available, forecast limits.
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1 Introduction

Traffic flow data are now routinely collected for many roads. These data can be used as part

of a traffic management system to assess highways facilities and performance over time, or

for real-time traffic control to prevent and manage congestion. The data can also be used

as part of a traveller information system. Good short-term traffic flow forecasting models

are vital for the success of both traffic management and traveller information systems. This

paper focuses on developing flow forecasting models particularly appropriate for assessing

highways facilities and performance over time or for providing advanced traffic information

for travellers.

1Address for correspondence: Department of Mathematics and Statistics, The Open University,
Milton Keynes, MK7 6AA, UK. Email: o.anacleto-junior@open.ac.uk
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Traffic flow data are time series of counts of vehicles passing data collection sites, S(1), . . . , S(n),

across a network. Traffic flows at sites upstream and downstream to S(i) are informative

about the flows at S(i). To make use of this, lagged flows at other sites have been used

by some to help forecast flows at S(i) (Tebaldi et al., 2002; Kamarianakis and Prastacos,

2005; Stathopoulos and Karlaftis, 2003), while others use conditional independence so that

lagged flows only at adjacent sites to S(i) are required (Whittaker et al., 1997; Sun et al.,

2006). However, when the time interval over which vehicles are counted is long enough for

vehicles to register at more than one site in the network in the same time period, as is the

case in this paper, then the flows at other sites at lag 0 are helpful for forecasting flows

at S(i). The proposed model, a dynamic graphical model called the linear multiregression

dynamic model (LMDM) (Queen and Smith, 1993), takes advantage of this and uses in-

formation regarding upstream flows at time t for forecasting flow at S(i) at the same time

t (see Section 3 regarding how this is done).

While Carvalho and West (2007) use an undirected graph to represent conditional inde-

pendence relationships in the covariance structure of a multivariate time series, the LMDM

represents any conditional independence relationships related to causality across the time

series by a directed acyclic graph (DAG). This DAG is used to break the multivariate

model into simpler univariate components, each of which is (conditionally) a Bayesian re-

gression dynamic linear model (DLM) (West and Harrison, 1997). In the context of traffic

forecasting, as in Sun et al. (2006), the direction of traffic flow produces the causal drive

in the system and the possible routes through the network are used to define a conditional

independence structure across the time series.

Each univariate regression DLM in the LMDM uses contemporaneous upstream traffic

flows as regressors. Tebaldi et al. (2002) also use regression DLMs when modelling traffic

flows, with upstream traffic flows as linear regressors. However, their regressors are lagged

flows, rather than contemporaneous flows, because they have 1-minute flows so that, unlike

in this paper, vehicles are not counted at multiple sites during a single time period.

This paper specifies a DAG and associated LMDM for a busy motorway intersection

near Manchester, UK. Although the advantages of the LMDM in the context of traffic
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forecasting have been extensively explored (Whitlock and Queen, 2000; Queen et al.,

2007; Queen and Albers, 2009), modelling issues still remain, including accommodating

different levels of traffic variability depending on the time of the day (Kamarianakis et

al., 2005) and accommodating measurement errors which can occur due to data collection

errors (Bickel et al., 2007). The methodology presented in this paper is developed to tackle

these important practical issues. Additionally, the paper uses simulation to compare the

approximate (easily calculated) forecast limits usually used in the LMDM with estimates

of the true (not easily calculated) forecast limits.

Although this paper focuses on using the LMDM in the context of traffic flow forecasting,

the model is potentially suitable for any application involving flows, such as electricity

flows, signal flows in telecommunication networks, flows of packages over the internet,

flows of goods in supply chains, and so on. It can also be applied to different types of

multivariate time series problems such as sales forecasting (Queen, 1997). Farrow (2003)

also focuses on sales forecasting using a model similar to the LMDM, while Fosen et al.

(2006) and Guo and Brown (2001) use similar ideas to the LMDM to analyse hormone

time series and cancer patients with liver cirrhosis, respectively.

The paper is structured as follows. Section 2 describes the data used throughout the paper.

Section 3 gives a brief review of the LMDM while in Section 4 an LMDM is specified for the

particular network of interest. Section 5 extends the LMDM so that it can accommodate

the heteroscedasticity present in the usual pattern of traffic flows, while Section 6 adapts

the proposed LMDM to accommodate measurement errors which frequently occur due to

data collection errors. Section 7 investigates how close the approximate forecast limits

usually used with the LMDM are to the true forecast limits. Finally, Section 8 offers some

concluding remarks and discusses issues for future research.

2 The data

This paper focuses on developing a model for forecasting traffic flows at the intersection

of three motorways — the M60, M62 and M602 — west of Manchester, UK. Figure 1(a)

shows an aerial photograph of the network.
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Figure 1: The Manchester network: (a) aerial photograph ( c©2012 DigitalGlobe, GeoEye,
Infoterra Ltd & Bluesky, The GeoInformation Group, Map data c©2012 Google) and (b)
schematic diagram.

The data are counts of vehicles passing over induction loops in the road surface at a

number of data collection sites in the network. A schematic diagram of the Manchester

network reflecting the layout of the data sites is given in Figure 1(b). Here, the arrows

show the direction of travel and the data sites are labelled and indicated by circles. The

data used in the paper were collected between March and November 2010 by the Highways

Agency in England (http://www.highways.gov.uk/).

The data are in the form of minute counts. For traffic management systems for assessing
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Figure 2: (a) 15-minute flows at site 1437A (solid line) and site 6013B (dashed line) for
07–11 June 2010. (b) Box-plots by weekdays using flows for the period 14:00-14:59 at site
1431A observed from March to November 2010.
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highways facilities, the Highways Capacity Manual (2010) recommends aggregating data

into 15-minute intervals. 15-minute intervals are also suitable for traveller information

systems, traveller decisions being influenced by the expected conditions further along

their route systems (Vlahogianni et al., 2004). Thus in this paper the data have been

aggregated into 15-minute intervals. Adapting the models for shorter time periods will be

the focus of future research.

Figure 2(a) shows time series plots of 15-minute flows for a typical week for sites 1437A

(solid line) and 6013B (dashed line). The daily patterns for both sites are similar with

peaks in the morning and afternoon rush hours. Flows at all sites exhibit similar daily

patterns.

Figure 2(b) shows box-plots of flows for each weekday from March to November 2010 at

site 1431A for the period 14:00–14:59. These clearly show daily differences in level and

variability of flows. These daily differences can be incorporated into the model, but for

clarity of presentation, this paper will use flows for Wednesdays only (which doesn’t cause

problems with discontinuities because flows around midnight are very low and vary little).

It only takes a few minutes for a vehicle to traverse the network. So, for 15-minute data,

vehicles are usually counted at several data sites within the same time period. The LMDM

accommodates this, using information regarding the flows at sites upstream to a particular

site S(i) to help forecast the flow at S(i) in the same time period.

3 Linear multiregression dynamic models

This section gives a brief overview of LMDMs (see Queen and Smith, 1993, for full details).

Consider a multivariate time series Y t = (Yt(1) · · · Yt(n))> with a conditional indepen-

dence structure related to causality defined across it, so that for each i = 2, . . . , n and

at each time t, conditional on variables pa(Yt(i)) ⊆ {Yt(1), . . . , Yt(i− 1)}, Yt(i) is inde-

pendent of {Yt(1), . . . , Yt(i− 1)} \pa(Yt(i)) (where “\” reads “excluding”). Each variable

in the set pa(Yt(i)) is a parent of Yt(i) and Yt(i) is a child of each variable in pa(Yt(i)).

Variable Yt(i) is a root node if pa(Yt(i)) = ∅. The time series Y t can then be represented
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by a DAG at each time t with a directed arc to Yt(i) from each of its parents in pa(Yt(i)).

The LMDM uses the DAG to model the multivariate time series by n separate regression

DLMs: one each for Yt(1) and Yt(i)|pa(Yt(i)), i = 2, ..., n. Each time series has its parents

as linear regressors, while root nodes are modelled by any suitable DLMs. As such, the

LMDM is computationally simple and DLM techniques can be readily applied (see, for

example, Queen and Albers, 2009).

Formally, denoting all available information at time t− 1 by Dt−1, the LMDM is defined

as follows.

Yt(i) = F t(i)
>θt(i) + vt(i), vt(i) ∼ N(0, Vt(i)), i = 1, . . . , n, (1)

θt = Gtθt−1 +wt, wt ∼ N(0,W t), (2)

θt−1|Dt−1 ∼ N(mt−1,Ct−1). (3)

The mi-dimensional vector F t(i) contains an arbitrary, but known, function of the parents

pa(Yt(i)) and possibly other known variables; θt(i) is the mi-dimensional parameter vector

for Yt(i) and θ>t = (θt(1)> · · · θt(n)>); Vt(1), . . . , Vt(n) are the scalar observation vari-

ances; mt−1 and Ct−1 are the (posterior) moments for θt−1; matrices Gt, W t, and Ct−1

are block diagonal; w>t = (wt(1)> · · · wt(n)>), and vt(1), . . . , vt(n) and wt(1), . . . ,wt(n),

are independent sequences of independent errors.

Given the distribution (3), the prior distribution for θt|Dt−1 is obtained from (2). Fore-

cast distributions for each Yt(i) conditional on pa(Yt(i)) are then found separately via (1).

However, as Yt(i) and pa(Yt(i)) are both observed at the same time t, the marginal fore-

casts for each Yt(i) are required. Although the marginal forecast distributions cannot

generally be calculated analytically, the marginal forecast moments are readily available

using E(X) = E{E(X|Y )} and V (X) = E{V (X|Y )} + V {E(X|Y )}. Essentially, in the

LMDM, the marginal forecast moments of the parents of Yt(i) are used to obtain the

marginal forecast moments for Yt(i), which in turn are used to find the marginal forecast

moments of Yt(i)’s children, and so on (see Queen and Smith, 1993 and Queen et al.,

2008). Finally, because of the structure of the LMDM, after observing yt, the distribution

for each θt(i) can be updated separately (in closed form) within the (conditional) DLM
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for Yt(i)|pa(Yt(i)).

Some of the methodology developed in this paper directly affects the forecast variance.

In order to evaluate the forecast performance of these methods, the joint log-predictive

likelihood (LPL) is used rather than a measure based solely on forecast error. After

observing y1, . . . ,yT , the LPL for the LMDM is calculated as:

LPL =
T∑
t=1

{
n∑

i=1

log(f(yt(i)|pa(yt(i)), Dt−1)

}
.

Because the forecast variance directly affects the forecast limits, an alternative, deci-

sion theoretically principled way of comparing forecast performance, is through the mean

interval score (MIS), which is a function of the limits of the forecast interval for each

observation, with a penalty when the observation lies outside the interval (for details, see

Gneiting and Raftery, 2007). The MIS is then calculated over all observations in a time

series. This idea can be extended to the multivariate LMDM setting by simply calculating

the MIS over all observations for each time series.

4 Building an LMDM for the Manchester network

4.1 Forks and Joins

Traffic networks are basically a series of junctions of two types: forks and joins. A fork,

in which vehicles from a single site S(1) move to two sites S(2) and S(3), is illustrated in

Figure 3(a). A join, in which traffic from two sites, S(4) and S(5), merge to a single site

S(6), is illustrated in Figure 3(b).

(a) (b)

S(1) S(2)

S(3)

S(4)

S(5)

S(6)

Figure 3: (a) a fork and (b) a join. In each diagram, the arrows denote the direction of
travel and the circles are the sites.
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Let Yt(i) be the number of vehicles passing site S(i) during 15-minute period t. Following

Queen et al. (2007), Equation (1) in LMDMs for Yt(1), Yt(2), Yt(3) and Yt(4), Yt(5), Yt(6)

can be elicited to have the forms:

Yt(1) = µt(1) + vt(1), Yt(2) = αtyt(1) + vt(2), Yt(3) = yt(1)− yt(2),

Yt(4) = µt(4) + vt(4), Yt(5) = µt(5) + vt(5), Yt(6) = yt(4) + yt(5).
(4)

Thus, upstream flows are used in the models for downstream flows.

In (4), the µt(·) parameters are level parameters, while parameter αt represents the pro-

portion of traffic flowing from S(1) to S(2), and vt(·) are normal error terms. In Queen et

al. (2007) the normality of the errors vt(·) is justified by appealing to the Poisson approx-

imation to normality for large means. While the data in this paper cannot be considered

either Poisson or normal, as will be seen in Section 5, the variance does increase as a func-

tion of the mean. West and Harrison (1997) propose using a variance law within a normal

DLM to model such non-normal data. Thus, in order to take advantage of the computa-

tional simplicity of the LMDM and the ease with which established DLM techniques can

be incorporated into the model, normal errors will be used for vt(·) and, in Section 5, the

LMDM will be extended to incorporate a variance law to accommodate the non-normality

of the data. Note that the data could have been modelled using non-normal errors via

a generalisation of the LMDM known as the multiregression dynamic model (Queen and

Smith, 1993), but that would be more computationally complex. The data could also have

been transformed to normality, although that would lose model interpretability.

Following the terminology of the WinBUGS software (http://www.mrc-bsu.cam.ac.uk/bugs/),

Yt(3) and Yt(6) are modelled as logical variables. This is because all traffic from S(1) must

flow to S(2) and S(3), while all traffic from S(4) and S(5) flows to S(6). Of course, these

logical relationships are not exactly true because some vehicles will be between sites at

the start and end of the period. This error should, however, be small enough to make this

model appropriate.

DAGs representing the fork and join are given in Figure 4. Because the model for Yt(2)

depends on Yt(1), Yt(1) is a parent of Yt(2), and hence there is an arc from Yt(1) to Yt(2)

in the DAG, and so on. Logical variables are denoted by double ovals in the DAG. Joining

8



together the DAGs of individual forks and joins provides a general method for eliciting a

DAG and associated LMDM for an entire network. Figure 5 shows the full DAG for the

Manchester network.

(a) (b)

Yt(1)

Yt(2)

Yt(3)

Yt(4)

Yt(5)

Yt(6)

Figure 4: DAGs representing (a) a fork and (b) a join. The double ovals represent logical
variables.
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1

Figure 5: DAG for traffic data collection sites in the Manchester network.

4.2 Model parameters

Although each of the observation equations for Yt(1), Yt(4) and Yt(5) in (4) are alge-

braically the same for each time t, the actual parameters, µt(1), µt(4) and µt(5), will
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exhibit a diurnal cycle, as clearly shown in Figure 2(a). This diurnal cycle can be mod-

elled by a seasonal factor DLM (West and Harrison, 1997), in which there is a mean flow

level parameter for each 15-minute period in the day (as described in Queen and Albers,

2009), or by a Fourier form DLM (West and Harrison, 1997, Section 8.6) or by consider-

ing splines to represent the smooth flow trend over the day (as in Tebaldi et al., 2002).

The advantage of a seasonal factor model is its interpretability, which, as demonstrated in

Queen and Albers (2009), is especially helpful at times of modelling change via interven-

tion (the technique of intervention allows information regarding a change in the time series

to be fed into the model to maintain forecast performance — see West and Harrison, 1997,

Section 11.2). When flow data are aggregated to small time intervals such as 5 minutes,

a seasonal factor model can cause numerical instability problems with the Kalman filter

computations because of the large number of parameters on possibly different scales. In

this case, either a Fourier or a smooth trend model would be preferable for parsimony.

However, for 15-minute data, a seasonal factor model does not have such problems and

computation is fast and efficient.

The parameter αt in (4) represents the proportion of traffic flowing from parent to child

which, as illustrated in Figure 6, can vary systematically at different times of day. The

diurnal pattern exhibited by the parameter αt can also be modelled by a seasonal factor

model as described in Queen and Albers (2009).
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Figure 6: Proportion of traffic flowing from (a) parent 1431A to child 1437A and (b)
parent 6013B to child 6007L during four Wednesdays in May 2010.
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4.3 Linear relationship between parent and child

The LMDM equation for Yt(2) in (4) assumes a linear relationship between parent and

child. Figure 7, showing typical plots of 15-minute flows for parent versus child at different

times of the day, illustrates why this is a realistic assumption. A linear relationship

would explain most of the variation between parent and child in each plot, although the

relationship is not the same throughout the day. This is simply a consequence of the

diurnal cycle of the proportion parameter αt, as demonstrated in Figure 6. Notice that

there seems to be two separate regimes in the plot for 17:15–17:29. This is the result of

some unusual flows requiring intervention at the parent site.
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Figure 7: Plot of the 15-minute flows of parent 6013B versus the 15-minute flows of its
child 6007L for some periods of the day (plots on different scales).

4.4 Contemporaneous flows as regressors

The LMDM uses univariate regression DLMs with contemporaneous flows as linear regres-

sors. But could equally good forecasts be obtained for this application if univariate DLMs

with lagged flows as regressors are used instead (as, for example, in Tebaldi et al., 2002)?

To answer this question, both models were used to forecast 15-minute flows between

07:00–20:59 (ignoring the quiet night-time period) during May 2010 at sites 9206B and

9200B. The median squared error (MedianSE) and LPL were calculated for each model

(the median squared error was used rather than the mean squared error because of the

large number of possible outliers in traffic data — see Queen et al., 2007.) The LMDM

(with MedianSE = 1154 and LPL = −1288) did indeed perform better than univariate
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DLMs with lagged flows as regressors (with MedianSE = 2876 and LPL = −7198). This

result was also observed when forecasting 5-minute flows at these sites (LMDM MedianSE

= 232, LPL = −3404 and lagged flows MedianSE = 914, LPL = −3834).

5 Modelling flow heteroscedasticity

In an LMDM, following standard variance learning methods for DLMs (see West and

Harrison, 1997, Section 4.5), inference about the unknown, assumed constant, observation

variances Vt(i) = V (i), in (1) is based on a conjugate analysis for the associated precisions

φ(i) = V (i)−1. However, as can be seen from the boxplots of flows shown in Figure 8, the

assumption of constant observation variances is unrealistic here.

0 200 400 600 800 1000 1200 1400
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Figure 8: Boxplots of flows at site 1431A for various hours of the day using all Wednesdays
from March to November 2010.

The assumption of constant variance may also not be reasonable when using the LMDM

for other applications. As an example, the flow variability of goods to be distributed over

a chain of supermarkets can be affected by seasonal effects due to holidays and seasons

of the year. These seasonal effects can also, for example, be responsible for non-constant

variability of electricity flow distribution to residential areas.

Section 4.1 proposed extending the LMDM to incorporate a variance law to enable non-

normal data, in which the mean is related to the variance, to be modelled by an LMDM.

Such a variance law would also accommodate a non constant Vt(i). Since the LMDM
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uses simple normal DLMs for each Yt(i)|pa(Yt(i)), the LMDM can easily be extended to

incorporate a variance law into each conditional DLM, thus producing a novel approach

for accommodating non-normal data and non constant Vt(i) in multivariate state space

models.

In a variance law model, write the observation variance at time t as Vt(i) = k(µt(i))V (i),

where µt(i) and V (i) are the underlying level and observation variance, respectively, of

the series Yt(i), and k(µt(i)) represents the change in observation variance associated with

µt(i), which depends on the context and nature of the data (Migon et al., 2005).

Figure 9 shows (different) roughly linear relationships between log mean and log variance

of flows at site 9206B for two periods: 19:00-06:59 and 07:00–18:59. Similar relationships

can also be observed at other sites. These empirical relationships suggest that, for each

period,

log(Var(Yt(i))) = β log(µt(i)), (5)

where β takes different values for the two different periods.
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Figure 9: Flow mean versus flow variance (log scale, calculated using all Wednesdays
in 2010) at site 9206B: (a) the 48 15-minute periods during 19:00–06:59 and (b) the 48
15-minute periods during 07:00–18:59 (plots on different scales).

As pointed out by West and Harrison (1997), what is important is that k(µt(i)) “changes

markedly as the flow level changes markedly”, rather than determining precise values

for k(µt(i)). Thus, the empirical flow mean-variance relationship suggests modelling the
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change in observation variance associated with level µt(i) by

k(µt(i)) = exp(β log(µt(i))),

with different β values for the two periods 19:00–06:59 and 07:00–18:59. (An alternative

would be to have an intercept parameter in (5), but this wasn’t found to improve model

performance.)

The parameter µt(i) is the unknown mean of Yt(i). When considering a similar variance

modelling issue in DLMs in the related application of road safety research, Bijleveld et al.

(2010) use the observations themselves as proxies for the unknown mean. In this paper,

where the emphasis is very much on forecasting, µt(i) is estimated by its forecast, denoted

ft(i), obtained from the LMDM. This motivates a variance law in which Vt(i) in (1) is

replaced by

Vt(i) = exp(β log(ft(i)))V (i). (6)

The underlying observation variance V (i) can be estimated on-line dynamically as data are

observed using usual variance learning techniques (see West and Harrison, 1997, Section

4.5), whereas β can be estimated from flow means and variances using historical data,

with different β values for the two periods 19:00–06:59 and 07:00–18:59.

In addition to the use of a variance law, the LMDM can be adapted further to allow the

observation variances to evolve dynamically through time. Following methods developed

for univariate DLMs, suppose that the precision for the model for Yt(i)|pa(Yt(i)) can

change over time, so that given the posterior,

φt−1(i)|Dt−1 ∼ Gamma (at−1, bt−1) , (7)

the prior for φt(i) is given by,

φt(i)|Dt−1 ∼ Gamma (δat−1, δbt−1) , for δ ∈ (0, 1]. (8)

While the prior mean for φt(i) is the same as the posterior mean for φt−1(i), the prior

variance for φt(i) is larger than the posterior variance for φt−1(i), so that after observing

yt−1, there is more uncertainty about φt(i) than φt−1(i). Smaller values of δ increase the
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uncertainty more than larger values do. Thus smaller values of δ are suitable when the

observation variance is unstable over time whereas larger values are suitable when the

observation variance is more static. The updating equations to obtain the posterior for

φt(i) are straightforward, as shown in West and Harrison (1997). This idea can also be

used with the variance law so that, in (6), V (i) can also evolve dynamically.

5.1 Some results

Four different LMDMs were used for forecasting in the Manchester network:

• Model A assumes a constant V (i) and uses established variance learning techniques

to estimate V (i) on-line dynamically as data are observed;

• Model B assumes a time-varying Vt(i) using the variance law (6) with a dynamically

evolving underlying variance V (i) as in (7) and (8);

• Model C assumes a time-varying Vt(i) using the variance law (6) with a dynamically

evolving underlying variance V (i) as in (7) and (8) for period 19:00–06:59, while using

a dynamically evolving underlying variance V (i) as in (7) and (8) but no variance

law for period 07:00–18:59 (because of the weaker mean-variance relationship in this

period);

• Model D assumes a time-varying Vt(i) using the variance law (6) only.

Historical data from February to April 2010 were used to estimate the two values of β in

(6) for the two periods 19:00-06:59 and 07:00-18:59, and were also used, in the absence of

expert information, to elicit priors. On-line one-step ahead forecasts were then obtained

for Wednesday flows in May and June 2010.

As illustration of the parent and child forecast performance using Models A–D, Table 1

shows the LPL and MIS values when forecasting the 4 parent root nodes together with

their associated (non logical variable) children. For models B and C, a value for δ is needed

for each series. Following West and Harrison, 1997, the LPL could be used as an informal

guide to choosing the δ which gave the best forecast performance for these data. However,
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the LPL can be sensitive to outliers and so instead δ was chosen to minimise the MIS.

(Models A-D all have the same forecast means and so only an assessment of the forecast

limits is required.) The LPL and MIS quoted in Table 1 for each series for Models B

and C, are those obtained when using the δ which minimised the MIS for that series and

model. Although Model A performs the best in terms of LPL for the first pair of series

in Table 1, Model B performs the best in terms of MIS for these series, and in all other

cases, the best performing model is Model B, which uses the variance law and also allows

the underlying variance V (i) to evolve dynamically.

Table 1: LPL and MIS for forecasting using Models A–D.

LPL MIS
Series A B C D A B C D

(9206B, 9200B) −10, 001 −10, 040 −10, 230 −10, 266 691 498 541 635
(9188A, 9193J) −8, 010 −7, 710 −7, 852 −8, 394 407 294 336 396
(1431A, 1437A) −9, 615 −9, 077 −9, 140 −9, 158 595 414 453 487
(6013B, 6007L) −9, 137 −8, 466 −8, 724 −9, 157 441 272 347 385

As another illustration of the forecast performance, Figure 10 shows the observed flows

on a specific day for root node 1431A and its child 1437A, together with their one-

step ahead forecast means ft(i) and one-step ahead forecast limits defined as ft(i) ±

2
√

Var(Yt(i)|Dt−1). The forecasts were calculated considering Models A and B, since

Model B performs the best amongst the time-varying models. The effect of the variance

law and dynamically evolving underlying variance is clearly visible at both sites: for ex-

ample, the range of the forecast limits given by Model B is much smaller than the range

given by Model A during 00:00–06:59.

Note that there are some flows observed during the morning and afternoon peak periods

that lie outside the forecast limits based on Model A but lie inside the forecast limits

provided by Model B. As time t increases, in a variance law model, the observation variance

estimate, V̂t(i), has the form of an exponentially weighted moving average of the forecast

error (West and Harrison, 1997, p. 363), so that the most recent forecast error has a

larger weight than the forecast errors observed in the past. The result of this is that,

as the variance of the forecast distribution is scaled by V̂t(i), Model B will adapt more
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Figure 10: Observed flows on 19 May 2010, along with forecast means and forecast limits based
on Models A and B — sites (a) 1431A and (b) 1437A.

quickly to correct for large forecast errors than will Model A. This means that a variance

law model automatically increases uncertainty in the forecasts, which can be useful when

intervention may be required but expert information is not available.

In Figure 10, the forecast limits are quite wide at times and most observations lie within

them. However, for a well-calibrated model, approximately only 95% of observations

should lie within the forecast limits. Over the whole forecast period, Model B actually

is well-calibrated for the root nodes with roughly 95% of observations lying within the

forecast limits for each series: the wide forecast limits in Figure 10(a) are a result of

increased forecast uncertainty due to unexpected observations on that particular day. On

the other hand, for each root node, Model A underestimates the forecast uncertainty with

a coverage of roughly only 89%.
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When forecasting child variables, however, Model B overestimates the forecast uncertainty

with roughly 98% of observations falling within the forecast limits for each series, while this

time Model A is well-calibrated with a coverage of roughly 95%. This suggests that, for

child variables, there are factors affecting the variation that are not accounted for in Model

B. One possible element missing from Model B, is the use of data for other traffic variables

affecting flows. Anacleto et al. (2012) explore an adaptation of Model B also focusing

on the Manchester network which uses these extra variables when forecasting flows and

indeed that model is better calibrated with a coverage of roughly 95% for each of the four

child variables and roughly 96% for each of the four grandchild variables considered in

that paper.

6 Accommodating measurement error

6.1 Measurement errors

When building DAGs and MDMs for forks and joins in Subsection 4.1, Yt(3) and Yt(6)

were both modelled as logical variables without errors. However, as is common for data

in a variety of applications, loop detector data are prone to measurement errors due to

device malfunctions (see Chen et al., 2003 and Bickel et al., 2007) so that modelling Yt(3)

and Yt(6) as logical variables may not be a realistic assumption in practice.

To illustrate, consider the fork consisting of sites 1431A, 1437A and 6002A in Figure 1(b).

As noted in Section 4, it would be unrealistic to expect Yt(6002A) to be exactly equal to

Yt(1431A) − Yt(1437A) because of time-lag effects. However, when examining the errors

Yt(1431A)− (Yt(1437A)+Yt(6002A)), it is apparent that modelling Yt(6002A) as a logical

variable really is too simplistic. Figure 11 shows a histogram and q-q plot of these errors

observed in the period 21:00-22:59 during 2010 with 5% of the extreme errors excluded from

the plot. (The most extreme errors were removed because these would be dealt with using

intervention to maintain forecast performance and so the inclusion of such extreme errors

in the plot gives an unrealistic picture of the errors.) From the histogram in Figure 11(a)

it is clear that the errors are nearly all positive with some significant variability, while the
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q-q plot in Figure 11(b), suggests that an assumption of normally distributed measurement

error seems reasonable for 95% of the data and is worth considering as a simple model.
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Figure 11: Histogram (a) and q-q plot (b) of errors Yt(1431A)− (Yt(1437A) + Yt(6002A))
in the period 21:00-22:59 during 2010 (excluding 5% of the extreme errors).

6.2 Accommodating measurement error

Consider the fork of Figure 3(a). In Section 4.1, the layout of the sites and direction

of traffic flow suggested that the model for Yt(3)|Yt(1), Yt(2) could be simply Yt(3) =

yt(1) − yt(2). An alternative model which accommodates measurement error is of the

form:

Yt(3) = (yt(1)− yt(2))θt(3)(1) + θt(3)(2) + vt(3), (9)

where θt(3)(2) is the level of the measurement error and vt(3) ∼ N(0, Vt(3)), for some Vt(3).

As vehicles from S(1) can only go to S(2) or S(3), set the prior mean for θt(3)(1) to be 1

with small prior variance. Note that the measurement errors at S(1) and S(2) are taken

into account automatically through the model parameters and observation variances Vt(1)

and Vt(2). The DAG representing this new model is the same as in Figure 4(a) except

that the double oval (representing a logical variable) is now an ordinary single oval.

The distribution of the errors in the Manchester network actually differs with the time

of day, as illustrated in Figure 12. The mean of the error follows the usual pattern of

the flow observed during the day (see Figure 2(a)). To account for this, a seasonal factor

model can be used for θt(3)(2) in the same way as for modelling the diurnal cycle of µt(i)

in Section 4.2. Figure 12 also shows the error variability changing through the day. In

fact for the Manchester network, as with the flows themselves, there is a roughly linear
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relationship between the logs of the means and variances of the errors during periods

19:00–06:59 and 07:00–18:59. Thus the variability of Vt(3) can be accommodated by using

a variance law LMDM as in (6), combined with a dynamically evolving underlying variance

V (3) as in (7) and (8).
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Figure 12: Box plot of the errors Yt(1431A)− (Yt(1437A) + Yt(6002A)) in 2010.

An analogous model can be defined to allow for measurement error in a join.

6.3 Forecast performance

Model (9) and the logical model without an error term (as in (4)) were used to obtain

one-step ahead forecasts for the four children of root nodes considered as logical variables

in Figure 5: namely Yt(6002A), Yt(1445B), Yt(6002B) and Yt(9195A). A variance law and

dynamically evolving observation variance as described in Section 5 were used with each

model. As in the previous section, historical data from February to April 2010 were used to

estimate the β parameters for the variance law model and for eliciting priors, while on-line

one-step ahead forecasts were obtained for Wednesday flows in May and June 2010.

The MedianSE for each series when using these two models is shown in columns 2 and 3

of Table 2. (Neither the LPL nor the MIS are appropriate for model comparison here: the

LPL cannot be calculated for the model without an error and the MIS is not appropriate

because the error model naturally has wider forecast limits.) Table 2 also shows for each
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series (in columns 4 and 5) the means and standard deviations of the relative measurement

errors (that is, 100× (observed measurement error at time t)/Yt(i)).

Table 2: MedianSE for the error model (9) and logical model without an error term,
together with the means and standard deviations of the relative measurement errors.

MedianSE Relative measurement errors
Series Error model Logical model Mean Standard devation

Yt(6002A) 142 882 31.2 27.6
Yt(1445B) 969 1211 9.0 59.8
Yt(6002B) 180 159 −1.2 8.1
Yt(9195A) 618 616 0.4 3.3

As can be seen in Table 2, the error model performs significantly better than the logical

model in terms of MedianSE for two of these series and slightly worse for the other two

series. Notice that the series which show the greatest improvement in using the error

model in comparison to the logical model are those for which the relative measurement

errors are high. However, although the error model gives greater improvement in forecast

performance when the relative measurement errors are high, high relative measurement

errors also mean an increase in the uncertainty of the resulting forecasts which, in turn,

means that forecast limits are wider for series with high relative measurement error than

for series with low relative measurement errors. Although the choice of which of two

children at a fork should be considered to be the logical variable is arbitrary, the relative

measurement errors for each of the children should be considered when making a decision.

As with the time-varying variance model of Section 5, the forecast limits for each (child)

series in Table 2 overestimate the forecast uncertainty, with a coverage of roughly 97% for

each series when using the logical model, and roughly 99% for each series when using the

error model. Again, this is indicative that there are factors (such as extra traffic variables,

possibly) affecting the variability which are not captured by the model.

Of course, the normal model used here for modelling the measurement error is only a

simple model and other distributions may be more appropriate: for example, a mixture of

distributions may work well. However, traveller information systems and some traffic man-

agement systems require real-time forecasts, and so the computational costs of considering
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alternative approaches for error modelling must be carefully taken into account.

7 Forecast limits in the LMDM

When considering plots of forecasts together with the observed values, it is common

to include an indication of the uncertainty associated with the forecasts. In this pa-

per this has been done by considering the forecast limits as the marginal forecast mean

±(2 × marginal forecast standard deviation). The uncertainty of the forecasts are often

represented by forecast limits calculated in this way.

For normally distributed forecast distributions, roughly 95% of observations should lie

within these forecast limits and the forecast limits are approximately 95% (equal-tailed)

prediction intervals. However, the marginal forecast distributions in the LMDM are not

normal and, what’s more, they cannot usually be calculated analytically. Even though

recent advances in MCMC and sequential Monte Carlo techniques can simulate estimates

of the true forecast limits in real-time, the approximation based on marginal forecast

moments is far simpler and faster. But, if the forecast limits are calculated using the

marginal forecast moments in the LMDM, one question that remains is: how close is the

approximation to the true 95% forecast limits?

To answer this question, consider once again the forecast limits of site 1437A obtained

by this approximation (as shown in Figure 10). The ‘true’ 95% forecast limits of the

marginal forecast distributions for site 1437A would be the 2.5% and 97.5% percentiles of

the marginal forecast distributions. These can be estimated at each time t via simulation:

simulate samples from the marginal forecast distributions by simulating the joint forecast

distribution of parent Yt(1431A) and child Yt(1437A) via the normal forecast distribution

for Yt(1431A) and the conditional normal forecast distribution for Yt(1437A)|Yt(1431A).

Figure 13 shows the approximate forecast limits for site 1437A based on marginal moments,

together with the estimated ‘true’ forecast limits based on simulation. The plot shows the

same day as was considered in Figure 10 in which there were some unusual traffic flows

which created a high level of flow uncertainty. As can be seen, even when there is a lot
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of forecast uncertainty, the forecast limits based on marginal moments are in fact close

to the simulated true limits — certainly a good enough approximation given their ease

and speed of calculation. When considering all flow series considered in Table 1, forecast

intervals provided by both models also have similar MIS.
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Figure 13: Observed flows on 19 May 2010, along with forecast limits based on marginal moments
and simulated estimates of the true forecast limits for site 1437A.

8 Final Remarks

This paper developed models for forecasting multivariate traffic flow data, applying the

proposed methodology to the problem of forecasting in a particular network.

A DAG and LMDM to represent the Manchester traffic network was elicited. New method-

ology has been developed allowing for time-varying observation variances in multivariate

time series, extending the LMDM to incorporate variance laws and introducing methods

for allowing the individual variances to evolve dynamically. Methods have also been de-

veloped for accommodating the non-negligible measurement errors which often occur in

loop detector data. In addition, the paper used simulation to confirm that forecast limits

approximated using the (readily available) marginal forecast moments are in fact close to

estimates of the (not so readily available) true forecast limits calculated from the marginal

forecast distributions.

An area of further research is the development of methods for using additional traffic
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variables routinely collected along with flow data, such as average speed, headway and

occupancy, to improve flow forecasts. Although current multivariate traffic forecasting

models do not usually make use of the additional information from these variables, the

fact that the LMDM breaks the multivariate model into a set of regression DLMs means

that the incorporation of these variables into this particular multivariate model (using

a combination of theoretical well-known relationships between traffic variables and data-

driven approaches) is more straightforward. Research developing these ideas can be found

in Anacleto et al. (2012).

Acknowledgements

The authors thank the Highways Agency for providing the data used in this paper and also

Les Lyman from Mott MacDonald for valuable discussions on preliminary data analyses.

The authors also would like to thank one of the Editors and a Referee for their constructive

and helpful comments on an earlier version of the paper.

References

Anacleto, O., Queen, C.M. and Albers, C.J. (2012). Enhancing on-line multivariate flow forecasts
for road traffic networks. Available at http://statistics.open.ac.uk/2012 technical reports.

Bickel, P. Chen, C., Kwon, J., Rice, J., Van Zwet, E. and Varaiya, P. (2007). Measuring traffic.
Statistical Science. 22(4) 581-597.

Carvalho C. M. and West M.(2007). Dynamic matrix-variate graphical models. Bayesian Analysis.
2 69-98.

Chen, C., Kwon, J., Rice, J, Skabardonis, A. and Varaiya, P. (2003). Detecting errors and imputing
missing data for single loop surveillance systems. Transportation Research Record. 1855 160-167.

Farrow, M. (2003). Practical building of subjective covariance structures for large complicated
systems. The Statistician. 52 553-573.

Fosen, J., Ferkingstad, E., Borgan, Ø., and Aalen, O. O. (2006). Dynamic path analysis — a new
approach to analyzing time-dependent covariates. Lifetime Data Analysis. 12 143-167.

Gneiting, T. and Raftery, A.E. (2007). Strictly proper scoring rules, prediction, and estimation.
Journal of the American Statistical Association. 102 359–378.

Guo, W., and Brown, M. B. (2001). Cross-related structural time series models. Statistica Sinica.
11 961-979.

Highway Capacity Manual (2000). (Washington DC: Transportation Research Board, National

24



Research Council)

Kamarianakis, Y., Kanas, A. and Prastacos, P. (2005). Modeling traffic flow volatility dynamics
in an urban network. Transportation Research Record, 1923, 18-27.

Kamarianakis, Y., and Prastacos, P. (2005). Space-time modeling of traffic flow. Computers &
Geosciences. 31 119-133.

Migon, H.S., Gamerman, D., Lopes, H.F. and Ferreira, M. A. R. (2005). Dynamic models. In Dey,
D. and Rao, C.R., editors, Handbook of Statistics. 553-88.

Queen, C.M. and Smith, J.Q. (1993). Multiregression dynamic models. Journal of the Royal
Statistical Society, B. 55 No 4 849-870.

Queen, C.M. (1997). Model elicitation in competitive markets. In The Practice of Bayesian
Analysis (eds S. French and J.Q. Smith) 229-243. Arnold, London.

Queen, C.M., Wright, B.J. and Albers, C.J. (2007). Eliciting a directed acyclic graph for a multi-
variate time series of vehicle counts in a traffic network. Australian and New Zealand Journal of
Statistics. 49 (3) 221-239.

Queen, C.M., Wright, B.J. and Albers, C.J. (2008). Forecast covariances in the linear multiregres-
sion dynamic model. Journal of Forecasting. 27 175-191.

Queen, C.M. and Albers, C.J. (2009). Intervention and causality: forecasting traffic flows using a
dynamic Bayesian network. Journal of the American Statistical Association. 104 669-681.

Sun, S. L., Zhang, C. S., and Yu, G. Q. (2006). A Bayesian network approach to traffic flows
forecasting. IEEE Transactions on Intelligent Transportation Systems. 7 124-132.

Stathopoulos, A. and Karlaftis, G.M. (2003). A multivariate state space approach for urban traffic
flow modelling and prediction. Transportation Research Part C. 11 (2) 121-135.

Tebaldi, C., West, M. and Karr, A.K. (2002). Statistical analyses of freeway traffic flows. Journal
of Forecasting. 21 39-68.

West, M. and Harrison, P.J. (1997). Bayesian Forecasting and Dynamic Models (2nd edition)
Springer-Verlag, New York.

Vlahogianni, E. I., Golias, J. C. and Karlaftis, M. G. (2004). Short-term traffic forecasting:
overview of objectives and methods. Transport Reviews. 24(5) 533-557.

Whitlock, M.E. and Queen, C.M. (2000). Modelling a traffic network with missing data. Journal
of Forecasting. 19 7 561-574.

Whittaker, J., Garside, S. and Lindveld, K. (1997). Tracking and predicting a network traffic
process. International Journal of Forecasting. 13 51-61.

25


