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Abstract

In this paper, a new measure for assessing the temporal variation in the strength

of association in bivariate current status data is proposed. This novel measure is

relevant for shared frailty models. We show that this measure is particularly conve-

nient, owing to its connection with the relative frailty variance and its interpretabil-

ity in suggesting appropriate frailty models. We introduce a method of estimation

and standard errors for this measure. We discuss its properties and compare it to

two existing measures of association applicable to current status data. Small sample

performance of the measure in realistic scenarios is investigated using simulations.

The methods are illustrated with bivariate serological survey data on different in-

fections, where the time-varying association is likely to represent heterogeneities in

activity levels and/or susceptibility to infection.
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1 Setting the scene

Current status data, also known as case I interval-censored data, arise in survival analysis

when the exact timing of an event is unobserved and it is only known at a given point

in time whether or not the event has occurred (Sun 2006). Such data occur in various

fields including demographical studies (Diamond and McDonald 1992), tumorigenicity

experiments (Dunson and Dinse 2002) and epidemiology (Ding and Wang 2004).

Consider a bivariate setting and let Tj (j = 1, 2) be the two failure times of interest. Let

X denote the univariate monitoring time at which T1 and T2 are measured from the same

observational units (e.g. individuals) and assume that (T1, T2) are independent of X. A

concise representation of the observed information is {X, δ1, δ2}, where

δj =





1 if Tj ≤ X ,

0 if Tj > X ,

for j = 1, 2. In this paper, we are interested in current status data that are reasonable

to model by shared frailty models (Duchateau and Janssen 2008; Hougaard 2000; Wienke

2011). Such bivariate data occur naturally in infectious disease epidemiology, for instance,

when T1 and T2 represent the ages at the onset of infection by two distinct infectious agents

whose onset can only be determined to lie below or above X. In this context, the time scale

is age and the defining time point from which times are measured is birth. The association

between the ages T1 and T2 may carry information about relevant infection processes and

can be examined using paired serological survey data on two infections (Farrington and

Whitaker 2005). Serological data, which provide the main motivating example for this

paper, are a key resource in infectious disease epidemiology and are obtained by testing

blood serum residues for the presence of antibodies to one or more infections. A positive

(negative) result indicates prior infection (susceptibility to infection), giving rise to current

status data. Suppose that paired data are available on two infections and let X = x be the

age at the monitoring time. For infection j (j = 1, 2), the hazard rate (force of infection)

at age x for an individual with a positive random effect Z is assumed to be of the form

λj(x, Z) = Zλ0j(x) , (1)
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where the baseline hazards λ0j(x) are independent of Z and describe the age effect. The

random variation in Z induces association between the two failure times T1 and T2; T1

and T2 are conditionally independent given Z = z. The individual latent effects may be

viewed as individual frailties, yielding shared frailty models for the hazard rates. A shared

frailty model is natural in this setting, the latent frailty variable representing individual

characteristics, such as strength of the immune system or propensity to make contact,

which may have a bearing on several distinct infection processes.

Another example for bivariate current status data arise from tumorigenicity experiments

on a single non-lethal tumor at two different sites, e.g. liver and brain, to investigate

whether the environment accelerates the time until tumor onset in animals. In these

experiments, the time to tumor onset in the animals is only known to be less than or

greater than the observed time of death or sacrifice. Again, a shared frailty model is

natural, the latent frailty representing environmental exposures relevant to the progression

of disease at different sites.

In some circumstances, it is also of interest to assess the time dependence of association.

Farrington et al. (2001) showed how bivariate serological survey data on two infections

could be used to estimate heterogeneity using shared frailty models. Such heterogeneity

can reflect individual variation in susceptibility and effective contact rates (Coutinho

et al. 1999) and has implications for infection control. However, this work does not use

the available information on how the strength of association, and hence the degree of

heterogeneity, varies over time. Such information is important as it can suggest pointers

to the source of the heterogeneity – for example if the association is sustained in adulthood

it may reflect a common source of transmission for the two infections.

In a shared frailty model such as (1) the frailty Z solely generates the association structure

between the two variables T1 and T2. Therefore, a time-dependent association measure

should be free from the influence of the baseline hazards

Λ0j(x) =

∫ x

0

λ0j(t)dt ,

where Λ0j(x) is the cumulative baseline hazard rate to age x for infection j. Beyond that,

a useful time-dependent measure should reflect the variation in the strength of associa-

tion in survivors over time. Such a requirement is particularly relevant to shared frailty
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models, where the pattern of association can be used to select an appropriate frailty dis-

tribution (Viswanathan and Manatunga 2001).

Several measures to quantify the association in bivariate survival data are available

(Drouet Mari and Kotz 2001), including the odds ratio, Kendall’s τ (Kendall 1938), and

association parameters derived from copula models. A variety of parametric and semi-

parametric estimation methods have been proposed (Dale 1986; Hougaard 2000; Plackett

1965; Wang and Ding 2000). Various local indices to assess the time dependence of asso-

ciation and applicable in survival analysis have been introduced (Drouet Mari and Kotz

2001, pp. 178-190), describing the degree of dependence at a single time point.

The measure of choice in survival analysis for assessing time-varying dependence is Clay-

ton’s local cross-ratio function, originally introduced by Clayton (1978) and studied by

Oakes (1989) and Anderson et al. (1992). Let Tj (j = 1, 2) have marginal survivor func-

tions Sj(tj) = P(Tj > tj) and joint survival function S(t1, t2) = P(T1 > t1, T2 > t2). The

cross-ratio function (CRF) at (t1, t2) is defined as

θ∗(t1, t2) =
S(t1, t2)D1D2S(t1, t2)

[D1S(t1, t2)] [D2S(t1, t2)]
, (2)

where Dj denotes the derivative operator ∂/∂tj. Unlike global measures, such as Kendall’s

τ , the CRF is a local dependence function, related to the hazard of events. It is the ratio

of the hazard of T1 given T2 has taken place at time t2 over the hazard of T1 given T2

has not yet taken place at t2 (Oakes 1989). A CRF greater than one (< 1) corresponds

to a positive (negative) association between T1 and T2 and θ∗(t1, t2) < 1 if and only if

D1D2 ln S(t1, t2) < 0 (Gupta 2003). If T1 and T2 are independent, then θ∗(t1, t2) = 1.

It is well-established that the CRF is constant in case of the gamma frailty distribution,

decreases with time e.g. for the inverse Gaussian, and increases with time e.g. for the

compound Poisson distribution (Duchateau and Janssen 2008). The CRF is a frequently

used local measure of association for both right censored and interval censored survival

data (Bogaerts and Lesaffre 2008; Chen and Bandeen-Roche 2005). However, for current

status data, the joint survivor function S(t1, t2) is unobservable; only S(x, x), where X = x

denotes the observed monitoring (censoring) time, is available. This implies that the CRF

(2) cannot be evaluated directly from current status data.

Anderson et al. (1992) showed that the CRF has a local odds ratio (OR) interpretation.
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The CRF can also be interpreted as a local version of Kendall’s τ (Oakes 1989). However,

as previously noted, the CRF (2) cannot be evaluated directly from current status data

and hence neither can the corresponding local OR. Nevertheless, a non-local OR at (t1, t2)

can be. Let π00 = P(T1 > t1, T2 > t2) = S(t1, t2), π10 = P(T1 ≤ t1, T2 > t2), π01 = P(T1 >

t1, T2 ≤ t2), π11 = P(T1 ≤ t1, T2 ≤ t2) and define

OR(t1, t2) =
π00π11

π10π01

=
odds(T1 ≤ t1 | T2 ≤ t2)

odds(T1 ≤ t1 | T2 > t2)
. (3)

In terms of paired current status data on two infections, let π00(x) be the probability that

an individual of age x has been infected by neither infection and π10(x) the probability

that an individual of age x has been infected by infection 1 but not infection 2, and

similarly define π01(x) and π11(x). One can then assess the association between the two

infections by means of OR(x) = π00(x)π11(x)
π10(x)π01(x)

. If OR(x) is estimated at each time point

available (in the context of paired serological data at each age x), one can assess the

temporal strength in the association in bivariate current status data.

Anderson et al. (1992) also defined the following time-dependent measure for association

based on the conditional probability:

ψ(t1, t2) =
P(T1 > t1|T2 > t2)

P(T1 > t1)
=

S(t1, t2)

S1(t1)S2(t2)
. (4)

Large values of ψ(t1, t2) indicate positive dependence between T1 and T2. It holds that

θ∗(t1, t2) > 1 ⇒ ψ(t1, t2) > 1 (Gupta 2003). For independent events T1 > t1 and T2 > t2,

ψ(t1, t2) = 1. If S(t1, t2) < S(t1)S(t2), then there is negative dependence between T1 and

T2. In terms of paired current status data on two infections, the conditional probability

measure provides insights into the time-dependent nature of association by estimating

ψ(x) = π00(x)
π0+(x) π+0(x)

, where π0+(x) = π00(x) + π01(x) and π+0(x) = π00(x) + π10(x).

However, as will be demonstrated in the paper, the odds ratio and the conditional prob-

ability measure suffer the disadvantage that they can vary with time even in the absence

of any time-dependent effects. Furthermore, they lack interpretability in suggesting ap-

propriate frailty models.

The main aim of this paper is to propose a new method for studying the temporal vari-

ation in the strength of association found in bivariate current status data. The proposed
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measure of association is relevant for shared frailty models and is based on the associa-

tion parameter derived from Clayton’s copula (Clayton 1978; Nelson 2006) for quantifying

time-dependent association. We will show that this new measure is particularly conve-

nient, owing to its connection with the relative frailty variance that describes the het-

erogeneity of the hazard functions in the survivor population, and its interpretability in

suggesting appropriate frailty models. Maximum likelihood estimates of the time-varying

association parameter are obtained at each time point and their standard errors are cal-

culated by means of the Delta method. We make use of scatterplot smoothers to improve

the interpretability of the dependency pattern and to capture trends with age.

We emphasize that the methods developed here are entirely exploratory. At no stage

do we model the data. Our aim is simply to provide a useful representation of bivariate

current status data, to facilitate the choice of a frailty model.

The remainder of the paper is organized as follows. In Section 2, we present a brief mo-

tivating example. In Section 3, the new association measure relevant for shared frailty

models is introduced along with a method of estimation and standard errors. A simulation

study is carried out to evaluate bias and variance of the new measure in small samples

under realistic scenarios. An evaluation of how the proposed measure as well as existing

association measures perform with respect to identifying time-varying effects in shared

frailty models with bivariate current status data is given in Section 4. In Section 5, the

methods developed in this paper are applied to paired serological survey data on a range

of infections. Concluding comments are given in Section 6. Computations in this paper

were carried out using the software package R version 2.13.1 (R Development Core Team

2011). All computer code used is available upon request.

2 A motivating example

We provide a motivating example using a set of serological survey data collected in 1994 on

Epstein-Barr virus (EBV) and herpes simplex virus type 1 (HSV1) infections (cf. Section

6 for a more detailed description of the data). Residual blood samples from individuals

of 1-30 years of age were tested for antibodies to both infections. A positive result for
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either infection indicates that the individual is immune; a negative result indicates that

the individual is susceptible. For each blood sample, paired results for EBV and HSV1

are available.

Serological survey data for the presence or absence of antibodies to one or more infec-

tions are a key resource for understanding the epidemiology of infectious diseases and

for designing and monitoring the implementation of control strategies. Serological data

are of importance in any quantitative assessment of disease transmission. For commu-

nicable infectious diseases, the variability between individuals in the rate at which they

make contact with others, where a contact between two individuals is an opportunity

for transmission of infection, is often of primary public health interest (Farrington and

Whitaker 2005). Individual heterogeneity in contact rates can have a large impact on the

transmission of infection (Farrington et al. 2001). Individuals who make many contacts

will tend to acquire more infections transmitted via the same route.

Age-related heterogeneities in contact rates are particularly important. For example, con-

tact rates in measles transmission are believed to be highest between children, yet there

is substantial heterogeneity owing for example to variation in family environment, nurs-

ery attendance, individual behaviour and susceptibility. Thus, one needs to adequately

represent the age-related heterogeneities in contact rates that might be relevant to the

transmission of infection. Such heterogeneities can seldom be measured directly. How-

ever, for two infections with a common route of transmission, the variability between

individuals can naturally be modelled by a shared frailty that is induced on the force of

infection. In this context, the frailty represents variation in activity levels in interacting

with other individuals relevant to the transmission route. The higher the value of the

frailty, the higher the contact rate for that individual. The variation in contact rates will

induce associations between the two infections and can be examined using paired serolog-

ical survey data. Thus, the pattern of association by age can be used to investigate the

presence and degree of heterogeneity, and to suggest appropriate models.

Paired serological survey data on nx fixed individuals of age x give rise to a multino-

mial observation (n00x, n10x, n01x, n11x), where n00x is the number of individuals of age x

in the sample that are uninfected by either infection, n10x is the number of individuals
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Table 1: Dichotomous contingency table of a 4-tuple (n00x, n10x, n01x, n11x) at age x

XXXXXXXXXXXXXXXInfection 1

Infection 2
δ2 = 0 δ2 = 1

∑

δ1 = 0 n00x n01x n0+x = n00x + n01x

δ1 = 1 n10x n11x n1+x = n10x + n11x

∑
n+0x = n00x + n10x n+1x = n01x + n11x nx

that are uninfected by infection 2 but have been infected by infection 1, and so on (see

also Table 1). When bivariate data are thought to arise from a shared frailty model

with right-censored survival data, diagnostic plots based on the CRF are used to suggest

an appropriate frailty distribution (Viswanathan and Manatunga 2001; Duchateau and

Janssen 2008). The CRF is unavailable for current status data, though. Instead, one can

easily obtain maximum likelihood estimates (MLEs) of OR(x) and ψ(x), respectively, as

ÔR(x) =
n00xn11x

n01xn10x

and ψ̂(x) =
nxn00x

n0+xn+0x

,

where n0+x and n+0x are defined in Table 1. It is customary to work with the log of

an association measure than with the association measure itself, so we shall do so in the

sequel. The plots of Figure 1 display estimates of the log odds ratio and the log con-

ditional probability versus age, respectively, for the data on EBV and HSV1 infections.

In the plots the sizes of the points are made proportional to the precision (reciprocal of

the variance) of the estimates, that is, small points correspond to relatively large stan-

dard errors. A LOESS (locally weighted scatterplot smoothing) curve (Cleveland 1979)

is fitted to the set of points to capture trends with age. Weights for the cases are chosen

according to the precision of the estimates. This is done to ensure that the curve is less

influenced by estimates with relatively high standard error. Asymptotic standard errors

for the log odds ratio are well-established (e.g., Agresti 2002, p. 71). The derivation of

the asymptotic standard error of ln(ψ̂) is given in the supplementary material.

In Figure 1, the association patterns for the log odds ratio and the log conditional proba-

bility are rather different and it is not obvious which one (if any) provides guidance about

the degree of association in the population and how it evolves over time (cf. Subsection
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Figure 1: Plot of ln(ÔR) (left) and ln(ψ̂) (right) by age for EBV and HSV1 data (dashed

line: no association). For ln(ψ̂), a minimum point size was defined to make all

points visible.

6.1). One might ask, for example, if an overall decreasing ln(ÔR) and/or ln(ψ̂) would

imply decreasing association in the survivor population, as a decreasing cross-ratio func-

tion would? We show in this paper that this is not the case and propose a new measure

for current status data that has a useful interpretation in terms of shared frailty models

and does not suffer from the shortcomings of the log odds ratio and the log conditional

probability.

3 A new time-varying association measure relevant

for shared frailty models

For shared frailty models, the CRF (2) can be expressed as

θ∗(t1, t2) = 1 + a∗(t1, t2) , (5)

where

a∗(t1, t2) =
var(Z|T1 > t1, T2 > t2)

E(Z|T1 > t1, T2 > t2)2
(6)

is the variance of the distribution of the relative frailty, Z/E(Z|T1 > t1, T2 > t2), in the

population of survivors at (t1, t2) (Anderson et al. 1992). The properties of the relative
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frailty were first studied by Hougaard (1984). The quantity (6), called the relative frailty

variance (RFV), is thus a readily interpretable measure of how the heterogeneity of the

hazard functions of survivors, as represented by a frailty model, evolves over time.

Oakes (1989) showed that in Archimedean copula models (Genest and MacKay 1986a,b)

the CRF depends on (t1, t2) only through some function of S(t1, t2). Hence, this also holds

for a∗(t1, t2). As previously noted, θ∗(t1, t2) cannot be calculated directly for current status

data or indeed any other measure of local dependence. Instead, we propose a new measure

with a simple interpretation and which can be calculated from current status data, which

shares some of the properties of the cross-ratio function and the relative frailty variance

and tracks their variation with age.

3.1 A scheme to track the cross-ratio function for current status
data

As shown in (5), the CRF θ∗(x, x) can for shared frailty models be expressed in terms of

the variance of the frailty in survivors at time x, a∗(x, x). Since this cannot be identi-

fied from current status data, we instead use the variance of a gamma distributed frailty,

which reproduces the observed bivariate distribution of survivors at age x, S(x, x), and

the marginal distributions S1(x) and S2(x) (a formal definition of our measure will fol-

low). There are three reasons for choosing a gamma frailty. First, because the gamma

frailty corresponds to the time-invariant association case, which serves as a reference in

frailty models. Second, owing to the close link between the gamma frailty and the Clayton

copula (Clayton 1978), this choice can represent negative association, if it is present – and

thus can indicate that a shared frailty model is inappropriate, should this be the case. A

third reason - to be discussed later - is that this choice produces a measure that tracks

θ∗(x, x) and a∗(x, x).

Suppose a shared gamma frailty model with the frailty having mean one and shape param-

eter θ > 0. For convenience, the following reparameterization is proposed: φ = ln
(
1 + 1

θ

)
,

where ln denotes the natural logarithm, hence θ = 1/(eφ− 1). Then, for an observed pat-

tern S(x, x), S1(x) and S2(x), it holds that (Clayton 1978)

S(x, x) = max
{

0, (S1(x)1−eφ

+ S2(x)1−eφ − 1)1/(1−eφ)
}

, (7)
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where the value φ = 0 corresponds to independence between the two survival variables.

When φ < 0, (7) allows for negative dependence. Note that there is no frailty interpreta-

tion in this case. Let

f(φ, S(x, x), S1(x), S2(x)) =
(
S1(x)1−eφ

+ S2(x)1−eφ − 1
) 1

1−eφ − S(x, x) . (8)

It is easily shown that, if S(x, x) lies between S1(x)S2(x) and min{S1(x), S2(x)}, the

equation

f(φ, S(x, x), S1(x), S2(x)) = 0

considered as a function of φ, has a unique root φ0(S(x, x), S1(x), S2(x)). We define our

new measure to be this root:

φ(x) ≡ φ0(S(x, x), S1(x), S2(x)) . (9)

For a shared gamma frailty model with frailty variance θ−1, φ(x) is constant and φ(x) =

ln(1 + 1/θ) = ln(θ∗(x, x)). This follows from the definition of φ and the fact that if

θ∗(t1, t2) is a positive constant, then the frailty is gamma.

In general, however, the frailty might not be gamma distributed, that is, the association

in survivors might vary with time. If so, φ(x) will not be equal to the CRF θ∗(x, x).

Nevertheless, according to the following results, φ(x) tracks the RFV a∗(x, x) and hence

the local CRF θ∗(x, x) for all shared frailty models with monotone CRF regardless of the

frailty distribution, in the sense that it shows the same direction of travel.

Proposition 1. Consider a shared frailty model with cumulative baseline hazards Λ1(t)

and Λ2(t), and suppose that the cross-ratio function is such that θ∗(t, t) is monotone. Let

a(t) be such that θ∗(t, t) = a(Λ1(t) + Λ2(t)) + 1. Then,

(a) there exists a unique function u(t) such that φ(t) = ln{a(u(t)) + 1}, with u(t) ∈
[0, Λ1(t) + Λ2(t)], and φ(0) = ln(θ∗(0, 0)).

(b) under a weak identifiability condition, u(t) is non-decreasing and hence φ(t) is mono-

tone in the same direction as θ∗(t, t). Furthermore, if Λ1(t) and Λ2(t) are unbounded

then, if ln(θ∗(t, t)) tends to a limit c ≥ 0 as t →∞ where c can equal ∞, φ(t) also

tends to c.
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The proof of this proposition is in the supplementary material and the condition required

in part (b) is stated in the proof. Note that the identifiability condition required for part

(b) is sufficient but could perhaps be weakened. The condition fails, for example, when

λ1(t) = λ2(t) = 0 on some interval. Proposition 1 implies that, when θ∗(t, t) is monotone,

φ(t) is a lagged version of ln(θ∗(t, t)) and hence is also monotone. In addition φ(t) tends

to the same limits as ln(θ∗(t, t)) when t → 0 and t →∞.

Most standard frailties, such as from the power variance family (Aalen et al. 2008) have

cross-ratio functions such that θ∗(t, t) is monotone. Farrington et al. (2010) describe some

for which θ∗(t, t) is not monotone. In such cases the results of Proposition 1 apply to the

initial section [0, t1), where t1 is the first turning point of θ∗(t, t): on this interval, φ(t) is

a lagged version of ln(θ∗(t, t)) with φ(0) = ln(θ∗(0, 0)).

One might query the choice of the Clayton copula and ask whether an association measure

such as φ(x) could also be derived from Archimedean copulas other than the Clayton

copula, for example using the copula representation of a shared inverse Gaussian frailty

model. Such measures could indeed be defined. However, a measure derived from such

a copula representation would not track the heterogeneity over time. For example, for

the inverse Gaussian the RFV and the CRF are decreasing over time but the association

measure φ(x) derived from such a copula would be constant if the inverse Gaussian frailty

assumption holds.

3.2 Estimation and standard errors

An estimate of φ(x) is obtained by finding the root of the implicit function

f
(
φ(x), Ŝ(x, x), Ŝ1(x), Ŝ2(x)

)
=

(
Ŝ1(x)1−eφ(x)

+ Ŝ2(x)1−eφ(x) − 1
)1/(1−eφ(x))

(10)

−Ŝ(x, x) ,
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where Ŝ(x, x), Ŝ1(x) and Ŝ2(x) are calculated by the observed proportions, that is,

Ŝ(x, x) =
n00x

nx

, (11)

Ŝ1(x) =
n0+x

nx

, (12)

Ŝ2(x) =
n+0x

nx

. (13)

Since the estimates (11)–(13) are multinomial MLEs obtained from (n00x, n10x, n01x, n11x),

φ̂(x) is itself an MLE. The bisection algorithm as implemented in the function uniroot

in R version 2.12.1 (R Development Core Team 2011) is used for finding the value φ̂(x)

such that f
(
φ̂(x), Ŝ(x, x), Ŝ1(x), Ŝ2(x)

)
is equal to zero.

Estimated asymptotic standard errors for φ̂(x) were computed by means of the delta

method (Benichou and Gail 1989). For the derivation of the asymptotic standard error

of φ̂, the reader is referred to the supplementary material.

We carried out a simulation study to investigate bias and variance of the proposed measure

for various sample sizes. The design of the study along with the results are given in the

supplementary material. Results show that reliable estimates are obtained for moderate

sample sizes.

To reduce the effect of differences in the baseline hazards, we suggest that, like the cross-

ratio function, φ̂(x) can also usefully be plotted, not against x, but against a function of

π̂00(x) = Ŝ(x, x) such as 1− π̂00(x) or − ln(π̂00(x)) (see also Viswanathan and Manatunga

2001), suitably isotonized. A suitable isotonizing procedure is the method of greatest

convex minorant described by Groeneboom and Wellner (1992).

4 Evaluation of time-varying association measures for

shared frailty models

In this Section, the performance of the log odds ratio, the log conditional probability and

our proposed association measure in mirroring the temporal variation in the strength of

association shall be examined by means of experiments. In Subsection 4.1 we consider the

important case of gamma frailties and evaluate to what extent the three measures provide

useful diagnostics for identifying such models. We also investigate the impact of different

cumulative baseline hazards. The suitability of these measures in serving as a diagnostic
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tool to suggest appropriate frailty distributions other than the gamma is examined in

Subsection 4.2.

4.1 Identifying gamma frailties

Cumulative baseline hazards are generated for ages x = 0.05, 0.06, ..., 50.00 and the fol-

lowing three models for the baseline hazards λ0j (j = 1, 2): a constant baseline hazard,

λ0j(x) = cj (with c1 = 0.2 and c2 = 0.1), a Gompertz baseline of the form λ0j(x) =

aj exp{bjx} (with a1 = 0.006, b1 = 0.02, a2 = 0.008 and b2 = 0.03), and an exponentially

damped linear (EDL) function of age (Farrington 1990), λ0j = (αjx− γj) exp{−βjx}+ γj

(with α1 = 0.2, γ1 = 0.02, β1 = 0.2, α2 = 0.25, γ2 = 0.03, and β2 = 0.3). A shared

gamma frailty model with Z ∼ Γ(θ, 1/θ) and θ = 2 is defined, so that E(Z) = 1 and

Var(Z) = 1/2, and log odds ratios, log conditional probabilities and our proposed mea-

sure are calculated at each x for the three baseline hazards.

Figure 2 (i)-(vi) display the three tracings for the three association measures, where the

latter are plotted both against x and -ln(π00(x)). Note that the frailty is independent

of time and hence there is no time-varying association on an individual level, that is,

the heterogeneity in individuals does not vary with age. Furthermore, since the frailty

is gamma distributed, there is no time-varying association on a population level either,

that is, there is no time-varying association in survivors. Nevertheless, according to the

plots (i)-(iv) both ln(OR) and ln(ψ) (similarly) increase with age for all baseline models.

Moreover, when plotted against age the shape of the temporal variation in the strength

of association clearly depends on the baseline hazard chosen, see Figure 2 (i) and (iii)

for ln(OR) and ln(ψ), respectively. Hence, there is evidence that the odds ratio and the

conditional probability are both severely influenced by the cumulative baselines. When

plotted against − ln(π00(x)), however, ln(OR) and ln(ψ) are largely free of the influence of

the baseline hazards. By contrast, φ(x) is the same constant for all three baseline hazards,

as illustrated by Figure 2 (v) and (vi). That is, the obtained association pattern reflects

the absence of any time-varying association in the population, free from the influence of

the cumulative baselines.
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Figure 2: Shared gamma frailty model (θ = 2): ln(OR), ln(ψ) and φ against x and

− ln(π00(x)) for constant baseline (solid line), Gompertz baseline (dotted line)

and EDL baseline (dot-dashed line) (horizontal dashed line: no association).
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4.2 Tracking the time-varying association in survivors

It is well established that the heterogeneity at the population level or association in

survivors is constant for the gamma distribution, decreases with time for the inverse

gaussian, and increases with time for the compound Poisson distribution (Aalen et al.

2008). To investigate whether the measures reflect these population effects, data are gen-

erated in the style described above and the three measures are calculated at each x for

various shared inverse Gaussian (Z ∼ InvG(1, θ)) and compound Poisson frailty models

(Z ∼ CP (1, θ−1, ν) and ν = 1.5), all with mean one and constant baseline hazards (with

c1 = 0.2 and c2 = 0.1). The results are displayed in Figure 3 and Figure 4 for the in-

verse Gaussian and compound Poisson frailty models, respectively, for a range of values

of Var(Z) = θ−1. Whereas the log conditional probability totally fails to mirror the

declining heterogeneity induced by the inverse Gaussian distribution for the whole range

of shape parameters, the log odds ratio reflects these population effects only for the case

θ = 0.1. For the compound Poisson frailty models the three measures increase, thus mir-

roring the increasing heterogeneity of the survivor population. However, neither ln(OR)

nor ln(ψ) clearly differentiate between inverse Gaussian and compound Poisson frailties,

and induce very different dependence patterns in survivors. Hence, there is evidence that

neither ln(OR) nor ln(ψ) are suitable diagnostics for suggesting a frailty distribution. In

contrast, for the whole variety of models tried our proposed measure adequately mirrors

the decreasing (increasing) heterogeneity caused by the inverse Gaussian (compound Pois-

son) frailties (see Figure 3 and Figure 4 (v) and (vi), respectively).

In Figure 5 (i)-(iv), φ(x) and ln(θ∗(x, x)) = ln(1+a∗(x, x)) are plotted against − ln(π00(x))

and x for a shared inverse Gaussian and compound Poisson model (with ν = 1.5) (both

with mean one and variance 10), respectively, choosing the same three baseline hazards

as described above. The upper three lines in plot (i) (in plot (iii)) correspond to φ(x) (to

ln(θ∗(x, x))), whereas the lower three lines correspond to ln(θ∗(x, x))) (to φ(x)). Figure 5

illustrates how, following Proposition 1, φ(x) is able to track the RFV a∗(x, x) in case

the frailty is not gamma distributed, that is, the association in survivors is not constant.

Moreover, when plotted against − ln(π00(x)) the shape of the time-varying association

does not depend on the baseline hazard chosen. When plotted against x, the shapes differ
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Figure 3: ln(OR), ln(ψ) and φ against x and− ln(π00(x)) for Z ∼ InvG(1, 0.1) (solid line),
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(dot-dashed line) and constant baseline hazards.
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(as expected), reflecting the strengths of the selection effects represented by the different

baselines. We also varied the parameter values for θ in the inverse Gaussian distribution

and for θ and ν in the compound Poisson distribution. Results (omitted) confirm these

findings. In this sense, the new time-varying association measure helps to suggest a class

of frailty distributions, based on how the heterogeneity in survivors varies with time.

5 Applications to serological survey data

In this Section, the methods developed in this paper are illustrated with two datasets,

on Epstein-Barr virus (EBV) and herpes simplex virus type 1 (HSV1) infections (the

motivating example of Section 2) and on Toxoplasma and Helicobacter pylori infections.

The data have arisen from two large surveys undertaken in the United Kingdom (Data

source: Health Protection Agency). Both are nationwide surveys of serum samples taken

for diagnostic testing for conditions unconnected with the infections studied here. For

each infection, a positive (negative) test result indicates prior infection (susceptibility to

infection). Equivocal test results are recoded as being positive indicating prior exposure.

Owing to ethical restrictions, the only information on each individual is locality of the

testing laboratory, gender, age, and test results.

5.1 EBV and HSV1 infections

This survey was undertaken in 1994 and was reported by Morris et al. (2002). Serum

samples from 2,803 individuals age 1-30 years were tested for evidence of prior infection

by EBV and HSV1. There is no vaccination against EBV and HSV1. Both infections

are transmitted through exchange of saliva. Two types of contacts are believed to be

involved: general person-to-person contacts, which peak in childhood, and intimate con-

tacts through kissing, which occur after puberty and peak in teenage years (Heymann, D.

L. (ed.) 2008, pp. 300–304, 428–430). Since both infections share the same route of trans-

mission, it is plausible that the association between them should be governed by a shared

frailty. Farrington and Whitaker (2005) give odds ratios for the association between EBV

and HSV1 infection within age groups. They found the association to be significant in all
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groups. However, Farrington and Whitaker (2005) do not provide a diagnostic tool for

shared frailty models with current status data, nor do they focus on how the strength of

association varies with age.

Figure 6 (i), (ii) and (iii) are plots of estimates of φ, of the log conditional probability

and of the log odds ratio versus age, respectively, for the data on EBV and HSV1 in-

fections (cf. Section 2). For all of the 4-tuples (n00x, n01x, n10x, n11x) none of the counts

are equal to zero. Note that in Figure 6 (i), φ̂ is plotted against x and not, as suggested

in Subsection 3.2, against − ln(π̂00(x)), where π̂00(x) is isotonized by the greatest convex

minorant method (for the latter plot see Figure 6 (iv)). This is because age is the key

variable we are interested from the epidemiological point of view. By plotting φ̂ against

− ln(π̂00(x)) we would lose the age-related interpretation. However, both plots have their

merits. Unlike in Figure 6 (i), φ̂ in Figure 6 (iv) reduces the dependence on the baseline

hazards, therefore satisfying one of the desirable properties of time-varying association

measures for shared frailty models (cf. Subsection 4.1). As such, a diagnostic plot like

Figure 6 (iv) would allow us to compare association patterns in different datasets.

In the age-varying association pattern (i) for φ̂ two peaks can be identified, in early child-

hood and in late teen years, whereas the association is overall decreasing towards zero.

The two peaks are due to a greater variation between children and between adolescents in

contact patterns. The observed decreasing association in survivors is suggestive of a time-

invariant frailty with decreasing relative frailty variance (e.g. an inverse Gaussian frailty

model) or a frailty that varies over time. The plot (ii) for the log conditional probability

tells a rather different story. At early ages, this might appear to suggest little association

between the two infections. However, this is due to the fact that in the definition of

ψ̂(x) = nx n00x

n0+xn+0x
the cell n00x determines the association if n01x and n10x are relatively

small compared to n00x. For paired serological survey data this is likely to be the case

at early ages. The dominance of n00x in the definition of the measure also has an effect

on the standard errors; the precision of the estimates are much larger at early ages and

hence lower at later ages compared to the ones obtained both for the log odds ratio and

φ̂. It seems a serious shortcoming of the conditional probability measure that the degree

of association is overly influenced by the single cell n00x. The plot (iii) for the log odds
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ratio is quite similar to plot (i). However, as it has been illustrated in Subsection 4.2, the

odds ratio lacks a clear interpretation in terms of frailty models.

5.2 Toxoplasma and Helicobacter pylori infections

This survey was undertaken in 1996. Whereas the study of Helicobacter pylori was re-

ported by Vyse et al. (2002), a study on the Toxoplasma data hasn’t been published

yet (Richard Pebody 2010, personal communication). A total of 3,632 individuals age

1-84 years were tested for antibodies to Toxoplasma and Helicobacter pylori infections.

Toxoplasma is a protozoan zoonosis. Human infection in pregnancy at early stages may

lead to death of the fetus or can seriously damage the baby later. Helicobacter pylori is a

bacterial infection of humans causing acute and chronic gastritis and peptic ulcer disease.

Both infections are transmitted by oral ingestion of contaminated matter (Heymann, D.

L. (ed.) 2008, pp. 250-253, 613-617). There is no vaccination against either infectious

agents for humans. Heterogeneity in hygiene is likely to result in association between the

two infections. To the best of our knowledge, the two infections have not been studied

together.

For this paired data set one or more of the counts within the 4-tuples (n00x, n01x, n10x, n11x)

are zero. We propose to deal with zeroes as follows. If there is a single cell in the 4-tuple

of counts, add 0.5 to all of the counts in the corresponding 4-tuple (Agresti 2002, Section

9.8). When there are two zeroes, but all 4 margins n0+x, n+0x, n1+x, and n+1x are greater

than zero, add 0.5 to all of the cells. If there are two zeroes and at least one of the

margin is zero or there are more than two zero cells, the point is not informative about

association and should be combined with a neighbour, and plotted at the average age. For

the data on Toxoplasma and Helicobacter pylori infections this was done for the points

at x = 2, 3, 6, 7, 13, at which two cells and one margin were zero. Alternatively, the point

could be deleted. Note that ln(ψ̂) can be calculated when all three cells other than n00

are zero, in which case ln(ψ̂) = 0 and so there is ‘no association’. However, for the sake

of comparability, we combined the same points for all measures.

Figure 7 (i), (ii) and (iii) are plots of estimates of φ, of the log conditional probability and

of the log odds ratio versus age, respectively, for the data on Toxoplasma and Helicobacter
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pylori infection. The plot (i) for φ̂ suggests that there is particularly strong heterogeneity

among pre-school children and that the heterogeneity in the survivor population may be

decreasing towards a positive asymptote. If so, Proposition 1 indicates that this is also

true of the cross-ratio function and relative frailty variance. An equalisation effect caused

by school socialisation may be responsible for the reduction in heterogeneity with age,

whereas the remaining positive association in adulthood is likely to due to differences

between individuals in behaviour such as differences in hygiene levels.

In terms of a modelling strategy, the decreasing heterogeneity in adulthood could be due

to a selection effect caused by a time-invariant frailty model or to a temporal variation of

the frailty itself. With respect to the former, Aalen et al. (2008) describes the Kummer

family of densities for use in shared frailty models. This family includes distributions with

relative frailty variance monotonically decreasing towards a positive asymptote (Farring-

ton et al. 2010). Figure 7 (iv), in which φ̂ is plotted against a function of an isotonized

version of π̂00(x), is informative mainly about the heterogeneity between children at early

ages, owing to the sparsity at higher ages. The plot (iii) for estimates of the log odds ratio

closely resembles plot (i). For the log conditional probability, the observed association

pattern (ii) indicates independence between the two infections. However, the observed as-

sociation pattern is misleading; the absence of age-varying heterogeneity is solely a result

of the dominant effect of the count of individuals being susceptible to both infections. As

in the previous example, there are large differences in the standard errors for the estimates

of ln(ψ̂). We conclude that this measure is seriously flawed and not appropriate to assess

time-varying association in current status data.

6 Discussion

We introduced a new measure for assessing the temporal variation in the strength of

association inherent in bivariate current status data. Owing to its connection with the

relative frailty variance, the new measure φ serves as a diagnostic tool for suggesting classes

of frailty distributions with constant, increasing or decreasing relative frailty variance.

The shape of the observed time-varying association aids identification of a suitable frailty
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model, which then could be fitted to the data set at hand. The diagnostic plot of φ̂,

or a smoothed version thereof, in which the time axis is suitably rescaled to remove the

effect of the cumulative baselines would also allow us to compare different frailty models

in different populations or different processes within the same population.

A notable merit of φ is that it tracks Clayton’s local cross-ratio function and hence the

relative frailty variance in the sense that it has the same direction of travel. In contrast,

existing global measures of association applicable to current status data such as the non-

local version of the odds ratio or the conditional probability lack any connection to local

dependence functions. Moreover, we illustrated that the odds ratio and the conditional

probability may not reliably suggest appropriate frailty distributions.

The methods developed in this paper were applied to bivariate serological survey data.

Based on our analysis of two data sets on pairs of infections, we conclude that this new

measure is a fruitful one that can provide insights in representing heterogeneities between

individuals in the acquisition and transmission of infectious diseases.

There are two broad limitations to our approach. The first limitation is due to data

imperfections. With current status data the event of interest could have occurred at

any time during the interval (0, x]. Therefore, the association observed at time x will

not be truly local but ‘averaged’ in some sense over (0, x]. The second, which is shared

with other measures of association, is due to identifiability issues inevitably associated

with frailty models. In shared frailty models, the temporal pattern in the population

association could be due to a time-varying frailty or to selection effects stemming from a

time-invariant frailty, and there is no way of distinguishing between them. Nevertheless,

our exploratory approach provides a new way of investigating the association structure in

current status data before fitting models. In this sense, the exploratory tools presented in

this paper could be viewed as the initial step of a comprehensive model selection procedure

for analyzing current status data by means of frailty models.
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Supplementary material

Asymptotic standard error for ln(ψ̂); Proof of Proposition 1; Asymptotic standard error

for φ̂; Simulation study.
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Gupta, R. C. (2003), “On some association measures in bivariate distributions and their

relationships,” Journal of Statistical Planning, 117, 83–98.

Heymann, D. L. (ed.) (2008), Control of Communicable Diseases Manual, American Pub-

lic Health Association: Washington D.C., 19th ed.

Hougaard, P. (1984), “Life table methods for heterogeneous populations: Distributions

describing the heterogeneity,” Biometrika, 71, 75–83.

— (2000), Analysis of Multivariate Survival Data, Springer: New York.

Kendall, M. G. (1938), “A new measure of rank correlation,” Biometrika, 30, 81–93.

Morris, M. C., Edmunds, W. J., Hesketh, L. M., Vyse, A. J., Miller, E., Morgan-Capner,

P., and Brown, D. W. G. (2002), “Sero-epidemiological patterns of Epstein-Barr and

Herpes Simplex (HSV-1 and HSV-2) Viruses in England and Wales,” Journal of Medical

Virology, 67, 522–527.

Nelson, R. B. (2006), An Introduction to Copulas, Springer: Berlin, 2nd ed.

Oakes, D. (1989), “Bivariate survival models induced by frailities,” Journal of the Amer-

ican Statistical Association, 84, 487–493.

Plackett, R. L. (1965), “A class of bivariate distributions,” Journal of the American

Statistical Association, 60, 516–522.



29

R Development Core Team (2011), R: A Language and Environment for Statistical Com-

puting, R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0.

Sun, J. (2006), The Statistical Analysis of Interval-censored Failure Time Data, Springer:

New York.

Viswanathan, B. and Manatunga, A. K. (2001), “Diagnostic plots for assessing the frailty

distribution in multivariate survival data,” Lifetime Data Analysis, 7, 143–155.

Vyse, A. J., Gay, N. J., Hesketh, L. M., Andrews, N. J., Marshall, B., Thomas, H. I. J.,

Morgan-Capner, P., and Miller, E. (2002), “The burden of Helicobacter pylori infection

in England and Wales,” Epidemiology and Infection, 128, 411–417.

Wang, W. and Ding, A. A. (2000), “On assessing the association for bivariate current

status data,” Biometrika, 87, 879–893.

Wienke, A. (2011), Frailty Models in Survival Analysis, Chapman & Hall/CRC Press:

Boca Raton, FL.



1

Supplementary material to “A new measure of
time-varying association for shared frailty models with

bivariate current status data”

Steffen Unkel and C. Paddy Farrington

Department of Mathematics and Statistics
The Open University
Milton Keynes, UK

September 26, 2011

Asymptotic standard error for ln(ψ̂)

Let g(π) denote a differentiable function of π = (π00, π01, π10, π11)
> with sample value

g(π̂), where π̂ = (π̂00, π̂01, π̂10, π̂11)
>. The delta method implies that (e.g., Agresti 2002,

Section 14.1):

√
n [g(π̂)− g(π)]

d→ N (0, σ2) ,

where

σ2 =
∑

i

∑
j

πijζ
2
ij −

(∑
i

∑
j

πijζij

)2

is the asymptotic variance and

ζij =
∂g(π)

∂πij

(i, j = 0, 1) .

Then σ/
√

n is an asymptotic standard error for g(π̂). We apply the delta method to the

log conditional probability, taking

g(π) = ln(ψ) = ln

(
π00

π0+π+0

)
= ln(π00)− ln(π0+π+0)

= ln(π00)− (ln(π00 + π01) + ln(π00 + π10))

= ln(π00)− ln(1− π11 − π10)− ln(1− π11 − π01) (14)
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The partial derivatives ζij = ∂(ln(ψ))
∂πij

are

ζ00 =
1

π00

, (15)

ζ01 =
1

(1− π11 − π01)
=

1

π+0

, (16)

ζ10 =
1

(1− π11 − π10)
=

1

π0+

, (17)

ζ11 =
1

(1− π11 − π10)
+

1

(1− π11 − π01)
=

1

π0+

+
1

π+0

. (18)

Since
∑

i

∑
j πijζij = 1

π0+
+ 1

π+0
− 1 and ζ2

00 = 1/π2
00, ζ2

01 = 1/π2
+0, ζ2

10 = 1/π2
0+, ζ2

11 =

1
π2
0+

+ 1
π2
+0

+ 2
π0+π+0

, it holds that

σ2 =
∑

i

∑
j

πijζ
2
ij −

(∑
i

∑
j

πijζij

)2

=
1

π00

+
π01

π2
+0

+
π10

π2
0+

+ π11

(
1

π2
0+

+
1

π2
+0

+
2

π0+π+0

)
−

(
1

π0+

+
1

π+0

− 1

)2

=
1

π00

+
π01 + π11 − 1

π2
+0

+
π10 + π11 − 1

π2
0+

+ 2
(π11 − 1)

π0+π+0

+ 2

(
1

π0+

+
1

π+0

)
− 1 . (19)

Hence, the asymptotic standard error of ln(ψ̂) is

σ(ln(ψ̂)) =

(
1

nπ00

+
π01 + π11 − 1

nπ2
+0

+
π10 + π11 − 1

nπ2
0+

+
2

n

(
π11 − 1

π0+π+0

+
1

π0+

+
1

π+0

)
− 1

n

)1/2

. (20)

Proof of Proposition 1

Preliminaries

Consider a shared frailty model with cumulative baseline hazard functions Λ01(t) and

Λ02(t). We make use of the following two results from Farrington et al. (2010).

Fact 1: The relative frailty variance a∗(t1, t2) may be written a∗(t1, t2) = a(Λ01(t1) +

Λ02(t2)) for some function a, the scaled relative frailty variance. Thus θ∗(t1, t2) = 1 +

a(Λ01(t1) + Λ02(t2)).
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Fact 2: Let A(s) =
∫ s

0
a(t)dt. Suppose without loss of generality that the frailty has

unit mean. Then the marginal survivor functions S1(t) and S2(t) and the joint survivor

function S(t, t) evaluated at (t, t), may be represented as follows:

S1(t) = exp
(
−

∫ Λ01(t)

0

1

1 + A(s)
ds

)
, (21)

S2(t) = exp
(
−

∫ Λ02(t)

0

1

1 + A(s)
ds

)
, (22)

S(t, t) = exp
(
−

∫ Λ01(t)+Λ02(t)

0

1

1 + A(s)
ds

)
. (23)

The following proof of Proposition 1 (a) and (b) is for θ∗(t, t) monotone decreasing; that

for monotone increasing θ∗(t, t) is analogous.

Proof of Proposition 1 (a)

Define

f(x, u) = exp
( ∫ x

0

a(u)

1 + A(s)
ds

)
− 1

and note that f(0, u) = 0. Note also that φ(t) is defined implicitly by the relation

f(Λ1(t), e
φ(t) − 1) + f(Λ2(t), e

φ(t) − 1)− f(Λ1(t) + Λ2(t), e
φ(t) − 1) = 0.

Since θ∗(t, t) is a decreasing function of t, it follows that a(s) is a decreasing function of

s. Now

∂2f

∂x2
(x, u) =

a(u){f(x, u) + 1}
{1 + A(x)}2

{a(u)− a(x)} ,

thus, ∂2f
∂x2 (x, 0) > 0 and so f(x, 0) is superadditive on [0, Λ1(t) + Λ2(t)]. It follows that

f(Λ1(t), 0) + f(Λ2(t), 0) ≤ f(Λ1(t) + Λ2(t), 0).

Also, ∂2f
∂x2 (x, Λ1(t) + Λ2(t)) < 0 for x ∈ [0, Λ1(t) + Λ2(t)], and so f(x, Λ1(t) + Λ2(t)) is

subadditive on this interval. Thus,

f(Λ1(t), Λ1(t) + Λ2(t)) + f(Λ2(t), Λ1(t) + Λ2(t)) ≥ f(Λ1(t) + Λ2(t), Λ1(t) + Λ2(t)).
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Since f is continuous, by the Intermediate Value Theorem there exists u(t) ∈ [0, Λ1(t) +

Λ2(t)] such that

f(Λ1(t), u(t)) + f(Λ2(t), u(t)) = f(Λ1(t) + Λ2(t), u(t)).

We now verify that u(t) is unique. Define

h(t, u) = f(Λ1(t), u) + f(Λ2(t), u)− f(Λ1(t) + Λ2(t), u).

Thus, u(t) satisfies h(t, u(t)) = 0. Choose any such value u0. We then have

∂h(t, u)

∂u
(t, u0) =

a′(u0)

a(u0)
{α1 ln(α1) + α2 ln(α2)− (α1 + α2 − 1) ln(α1 + α2 − 1)} ,

where the prime denotes differentation with respect to the argument and

αi = exp
( ∫ Λi(t)

0

a(u0)

1 + A(s)
ds

)
, i = 1, 2.

It is easily shown that α1 ln(α1) + α2 ln(α2) − (α1 + α2 − 1) ln(α1 + α2 − 1) < 0, since

α1, α2 > 1. Thus, since a(s) is decreasing, ∂h(t,u)
∂u

(t, u0) > 0. Hence the slope (with respect

to u) of h(t, u) at any u satisfying h(t, u) = 0 must be positive. It follows that u(t) is

unique and that φ(t) = ln{1 + a(u(t))} is well-defined. Since u(t) ∈ [0, Λ1(t) + Λ2(t)], as

t → 0, u(t) → 0 and hence φ(0) = ln(1 + a(0)) = ln(θ∗(0, 0)). This completes the proof

of Proposition 1 (a).

Proof of Proposition 1 (b)

The identifiability condition required is that, for any u, t1, t2 > 0 and a(s) strictly mono-

tone, h(t1, u) = h(t2, u) = 0 implies t1 = t2.

For a given value t0 of t, we have h(0, u(t0)) = h(t0, u(t0)) = 0. Also, for x ∈ [0, u(t0)]

the function f(x, u(t0)) is subadditive, so for t in the neighbourhood of zero such that

Λ1(t)+Λ2(t) ≤ u(t0), h(t, u(t0)) > 0. Thus, provided that t = t0 is the only positive value

such that h(t, u(t0)) = 0, then

∂h(t, u)

∂t
(t0, u(t0)) ≤ 0 .

By the Implicit Function Theorem, it then follows that

du(t)

dt
=

(
− ∂h(t, u)

∂u
(t, u(t))

)−1∂h(t, u)

∂t
(t, u(t)) ≥ 0
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and hence u(t) is non-decreasing with t. This implies that φ(t) is monotone.

Suppose now that Λ1(t) and Λ2(t) are unbounded, but that u(t) is bounded, that is,

u(t) → u0 as t →∞. We necessarily have a(u0) > 0. Thus, for large t, a(u0)− a(u(t)) =

o(1) in t and so

h(t, u0) = h(t, u(t)) + o(1) = o(1).

Thus, as t → ∞, the frailty tends to the gamma with a(t) = a0. It follows that if

ln(θ∗(t, t)) tends to ∞ or 0, then u(t) cannot be bounded and hence u(t) → ∞, and so

φ(t) tends to the same limit.

Suppose now that ln(θ∗(t, t)) → c where 0 < c < ∞. If u(t) → ∞ as t → ∞, then φ(t)

also tends to c. If, on the other hand, u(t) → u0 < ∞, the values θ = a(u0) and θ = c

both asymptotically (as t →∞) satisfy the relation

exp
( ∫ Λ1(t)

0

θ

1 + A(s)
ds

)
+exp

( ∫ Λ2(t)

0

θ

1 + A(s)
ds

)
−1 = exp

( ∫ Λ1(t)+Λ2(t)

0

θ

1 + A(s)
ds

)
.

It follows that a(u0) = c so that φ(t) again tends to the same limit as ln(θ∗(t, t)). This

finishes the proof of Proposition 1 (b).

Asymptotic standard error for φ̂

Suppose that x is a monitoring time. Define

f(φ, π00(x), S1(x), S2(x)) =
(
S1(x)1−eφ

+ S2(x)1−eφ − 1
)1/(1−eφ)

− π00(x) .

Thus φ(x) is defined implicitly by the equation

f(φ(x), π00(x), S1(x), S2(x)) = 0 .

Note that x plays no role in these relationships. In some of what follows, we suppress

reference to x and regard f as a function of the four variables φ, S1, S2 and π00.

A Taylor series representation of

f(φ, π00, S1, S2) =
(
S1−eφ

1 + S1−eφ

2 − 1
) 1

1−eφ − π00 (24)
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about (φ0, π0
00, S

0
1 , S

0
2) is

f(φ, π00, S1, S2) = f(φ0, π0
00, S

0
1 , S

0
2) + (φ− φ0)

∂f

∂φ

∣∣∣∣
0

+ (π00 − π0
00) +

∂f

∂π00

∣∣∣∣
0

+(S1 − S0
1)

∂f

∂S1

∣∣∣∣
0

+ (S2 − S0
2)

∂f

∂S2

∣∣∣∣
0

+ · · · . (25)

Truncating (25) after terms of first-order and setting f ≡ 0 gives the approximation:

(φ−φ0)2 ' 1(
∂f
∂φ

∣∣
0

)2

(
(π00 − π0

00)
∂f

∂π00

∣∣∣∣
0

+ (S1 − S0
1)

∂f

∂S1

∣∣∣∣
0

+ (S2 − S0
2)

∂f

∂S2

∣∣∣∣
0

)2

. (26)

It follows from (26) that the asymptotic standard error of φ̂ is

σ(φ̂) =
1

∂f
∂φ

∣∣
0

{
Var(π00)

[
∂f

∂π00

∣∣∣∣
0

]2

+ Var(S1)

[
∂f

∂S1

∣∣∣∣
0

]2

+ Var(S2)

[
∂f

∂S2

∣∣∣∣
0

]2

+ 2Cov(π00, S1)
∂f

∂π00

∣∣∣∣
0

∂f

∂S1

∣∣∣∣
0

+ 2Cov(π00, S2)
∂f

∂π00

∣∣∣∣
0

∂f

∂S2

∣∣∣∣
0

+ 2Cov(S1, S2)
∂f

∂S1

∣∣∣∣
0

∂f

∂S2

∣∣∣∣
0

}1/2

. (27)

The variances, covariances and derivatives on the right hand side of (27) are

Var(π00) =
1

n
π00(1− π00) , (28)

Var(S1) =
1

n
π01(1− π01) +

1

n
π00(1− π00)− 1

n
π00π01 , (29)

Var(S2) =
1

n
π10(1− π10) +

1

n
π00(1− π00)− 1

n
π00π10 , (30)

Cov(π00, S1) =
1

n
π00(1− S1) , (31)

Cov(π00, S2) =
1

n
π00(1− S2) , (32)

Cov(S1, S2) =
1

n
π00(1− π00)− 1

n
π00π10 − 1

n
π00π01 − 1

n
π01π10 (33)

and

∂f

∂π00

= −1 , (34)

∂f

∂S1

= B(φ)
eφ

1−eφ S−eφ

1 , (35)

∂f

∂S2

= B(φ)
eφ

1−eφ S−eφ

2 , (36)

∂f

∂φ
= B(φ)C(φ)C ′(φ) ln B(φ)− C(φ)B′(φ)B(φ)C(φ)−1 , (37)
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where B(φ), B′(φ), C(φ) and C ′(φ) are

B(φ) = S1−eφ

1 + S1−eφ

2 − 1 , (38)

B′(φ) = −eφ
(

ln(S1)S
1−eφ

1 + ln(S2)S
1−eφ

2

)
, (39)

C(φ) = (1− eφ)−1 , (40)

C ′(φ) = eφ/(1− eφ)2 . (41)

In case φ = 0, the following limits are used in (27) instead of (35)–(37):

lim
φ→0

∂f

∂S1

= S2 , (42)

lim
φ→0

∂f

∂S2

= S1 (43)

and

lim
φ→0

∂f

∂φ
= S1S2 ln S1 ln S2 , (44)

by applying l’Hospital’s rule.

Simulation study

We describe here a brief simulation study. First, cumulative baseline hazards are obtained

for ages x = 1, 2, . . . , 40 and constant baseline hazards λ0j(x) = cj (j = 1, 2) with

c1 = c2 = 0.05. For each of the three frailty models Z ∼ Γ(0.1, 10), Z ∼ InvG(1, 0.1) and

Z ∼ CP (1, 10, 1.5) the proportions S1(x), S2(x) and S(x, x) are calculated and φ(x) is

obtained from these proportions for x = 1, . . . , 40. The multinomial probabilities π00(x),

π01(x), π10(x) and π11(x) are used to generate 5000 4-tuples of bivariate current status

data (n00x, n10x, n01x, n11x) for each of the four fixed sample sizes nx = 50, 100, 200 and

400. Estimates of the association measure along with its standard errors are obtained for

the 5000 replications using the procedure described in Subsection 3.2.

Figure 8 shows φ(x) along with the arithmetic mean of the φ̂(x) for sample size nx = 50

and nx = 400. For nx = 50, there is a slight upward bias for the gamma frailty (panel

(i)), virtually no bias for the inverse gaussian (panel (ii)), and a slight downward bias for

the compound Poisson (panel (iii)). For x = 20, Table 2 shows the bias of φ̂, its mean
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standard error (s.e.), the empirical s.e. obtained as the standard deviation of the 5000

simulated values, and the coverage probability of the 95% confidence intervals (P95), that

is, the proportion of the 5000 confidence intervals containing φ(20). The relative bias is

less than 5% even for nx = 50. The empirical standard error matches the mean of the

asymptotic values. The coverage probabilities are close to the nominal 0.95, except for the

compound Poisson model with nx = 50. As one would expect, as the sample size increases

the bias and variance of φ̂(20) decreases, the only exception being the compound Poisson

model. The results for the latter model are heavily influenced by the remedy of adding

0.5 to all counts if one of the values in the 4-tuple of observations is zero (cf. Section 6).

Table 2: Bias and variance of φ̂ for three shared frailty models and four different sample
sizes evaluated at x = 20.

Frailty model φ(20) nx = 50 nx = 100 nx = 200 nx = 400

Z ∼ Γ(0.1, 10) 2.3979

bias 0.1041 0.0725 0.0391 0.0192

mean s.e. 0.5010 0.3698 0.2547 0.1772

empirical s.e. 0.4965 0.3858 0.2605 0.1775

P95 0.9100 0.9556 0.9546 0.9552

Z ∼ InvG(1, 0.1) 0.9637

bias 0.0486 0.0140 0.0097 0.0054

mean s.e. 0.4083 0.2798 0.1953 0.1372

empirical s.e. 0.4311 0.2870 0.1978 0.1383

P95 0.9530 0.9508 0.9498 0.9520

Z ∼ CP (1, 10, 1.5) 3.9826

bias -0.1466 0.0849 0.1185 0.0681

mean s.e. 0.4037 0.4620 0.4028 0.2848

empirical s.e. 0.4222 0.4471 0.4228 0.3040

P95 0.7718 0.9398 0.9236 0.9572
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Figure 8: φ(x) (solid line) and (mean of) φ̂(x) for nx = 50 (dotted line) and nx = 400

(dashed line) for the Gamma (i), inverse Gaussian (ii) and compound Poisson

(iii) frailty model.


