Project title
Studying the Genetic and Phenotypic Diversity of South Asia

Principal supervisor
Kaustubh Adhikari

Second supervisor

Discipline
Statistics

Research area/keywords
Statistical genetics, Machine Learning, Multivariate analysis

Suitable for
Full time applicants, Part time applicants

Project background and description
South Asia is one of the world’s most populated regions, with enormous diversity in appearance genetics. In recent years, the field of human genetics has grown immensely in terms of data production and analysis, now routinely analysing data from thousands of people over millions of genetic markers [1] and thousands of variables [2]. Yet, South Asians are one of the least-studied groups of people [3]. Even in the developed nations with large cohorts for genetic research, such as the UK, the South Asian diaspora is massively underrepresented [4].

The proposed PhD project will address this imbalance by exploring various datasets, including diverse public datasets, to explore the genetic and phenotypic diversity of South Asia. The project will develop multivariate statistical models for the analysis of large numbers of genetic markers (genotypes) and physical characteristics (phenotypes), such as skin and eye colour [5]. Latest methods that are suitable for high-dimensional data, spanning both AI and machine learning domains [6,7] and classical statistical procedures [8,9], will be explored. Such methods will be useful in understanding the genetic and population history of the region [10], discovery of new genes associated with new phenotypes [5], and also better prediction of physical characteristics from genetic data, useful for forensic reconstructions [11].

There will also be the scope of studying ancient human samples by studying genetic data from ancient DNA obtained from prehistoric human remains [10], to better understand the demographic history of this region.

As an applied Statistics project, it will involve both theoretical and computational work. The candidate should have a suitable knowledge of statistics with a suitable degree. Computational (R / Python etc.) and programming experience would be useful. No prior knowledge of genetics or biology is required – all necessary training will be provided – though some understanding of the context might be useful. A degree in the area of statistical genetics, for example, would be useful, though this is not essential.

An associated theme of the work would be about conversations around increasing the diversity of genetics research [4], discussing the gains brought about in science by broadening the perspective. There will be substantial scope for the student to engage in outreach and public engagement, if interested.

Background reading/references

4. The GRACE project. https://open.ac.uk/research-projects/grace/

