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Abstract

A new approach for exploratory factor analysis (EFA) of data matrices with more

variables p than observations n is presented. First, the classic EFA model (n > p) is con-

sidered as a specific data matrix decomposition with fixed unknown matrix parameters.

Then, it is generalized to a new model, called for short GEFA, which covers both cases

of data, with either n > p or p ≥ n. An alternating least squares algorithm GEFALS

is proposed for simultaneous estimation of all GEFA model parameters. As principal

component analysis (PCA), GEFALS is based on singular value decomposition, which

makes GEFA an attractive alternative to PCA for descriptive data analysis and dimen-

sionality reduction. The existence and uniqueness of the GEFA parameters estimations

is studied and the convergence properties of GEFALS are established. Finally, the new

approach is illustrated with Thurstone’s 26-variable box data and real high-dimensional

data, while the performance of GEFALS – with simulation experiment.
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1 Introduction

Exploratory factor analysis (EFA) is a model that aims to explain the interrelationships

among p manifest variables by k (¿ p) latent variables called common factors. To allow

for some variation in each observed variable that remains unaccounted for by the common

factors, p additional latent variables called unique factors are introduced, each of which

accounts for the unique variance in its associated manifest variable (Bartholomew and Knott

1999; Harman 1976; Mulaik 1972; Thurstone 1947).

The classical fitting problem in EFA is to find estimates for the factor loadings matrix and

the matrix of unique factor variances which give the best fit, for some specified value of k,

to the sample covariance or correlation matrix with respect to some goodness-of-fit criterion.

One may then construct factor scores for the n observations on the k common factors as a

function of these estimates and the data.

Unlike the EFA factorization of the correlation matrix, fitting the EFA model directly

to the data yields factor loadings and common factor scores simultaneously (Horst 1965;

Jöreskog 1962; Lawley 1942; McDonald 1979; Whittle 1952). A brief summary of this class

of EFA methods is given in De Leeuw (2004), and their weaknesses are reviewed. The early

works had difficulties to define properly the EFA data fitting problem: they ended up with

an unbounded log-likelihood function. The least squares (LS) approach adopted by Horst

(1965) did principal component analysis (PCA), instead of EFA. The most recent and promis-

ing approach was proposed by McDonald (1979), however its ”computational and statistical

properties...are quite complicated...” (De Leeuw 2004). Particularly, McDonald (1979) em-

ployed the Guttman’s approach to find common and unique factors, however the latter ones

require strictly positive unique variances. As a remedy, De Leeuw (2004) proposed simulta-

neous estimation of all EFA model unknowns by optimizing a LS loss function, designed for

the classical case of ‘vertical’ data with n > p.

However, in many modern applications, the number of observations is less than the num-

ber of variables. For example, data arising from experiments in genome research are usually

in the form of large horizontal matrices of p genes (variables) under n experimental condi-

tions (observations) such as different times, cells or tissues. Another discipline where high-
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dimensional data with p À n typically occur is in atmospheric science, where a meteorological

variable is measured at p spatial locations at n different points in time.

This paper extends the approach of De Leeuw (2004) for EFA of ‘horizontal’ data matrices

with p ≥ n. The EFA model is considered as a specific data matrix decomposition with fixed

unknown matrix parameters. New assumptions are imposed on the EFA model parameters

which necessarily require the acceptance of unique factors with zero variance.

As in PCA (Jolliffe 2002) , the new EFA parameters estimation is based on the singular

value decomposition (SVD) (Golub and Van Loan 1996). Thus, the new approach to EFA

makes it computationally competitive descriptive technique for data analysis along with PCA.

The paper is organized as follows. The next Section briefly reviews the standard EFA

models with random and fixed common factors. Section 3 outlines approaches for fitting the

EFA model to vertical data. In Section 4, a generalization of the EFA model is introduced,

called GEFA hereafter, to cope with both vertical and horizontal data. Then, new numerical

procedure GEFALS for simultaneous estimation of all GEFA unknowns is proposed. Sec-

tion 5 deals with the existence and uniqueness of the GEFA estimators and the GEFALS

convergence properties. In Section 6 GEFALS is applied to the Thurstone’s 26-variable

box data (Thurstone 1947) and to a real high-dimensional data from atmospheric science.

Section 7 concludes the paper by summarizing the main findings.

2 The EFA models

Let z ∈ Rp×1 be a random vector of standardized manifest variables. Suppose that the EFA

model holds which states that z can be written in the form (e.g., Mulaik 1972, p. 97):

z = Λf + Ψu , (1)

where f ∈ Rk×1 is a random vector of k (k ¿ p) common factors, Λ ∈ Rp×k is a matrix of

fixed factor loadings, u ∈ Rp×1 is a random vector of unique factors and Ψ is a p×p diagonal

matrix of fixed coefficients called uniquenesses. The choice of k in EFA is subject to some

limitations (e.g., Mulaik 1972, p.138), which will not be discussed here.

Assume that E(f) = Ok×1, E(u) = Op×1, E(uu>) = Ip and E(fu>) = Ok×p, where Ip is an

identity matrix of order p and Op×k is a p× k matrix of zeros. Furthermore, let E(zz>) = Σ
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and E(ff>) = Φ be correlation matrices, i.e. positive definite (p.d.) matrices with unit main

diagonals. Then, the k-model (1) and the assumptions made imply that

Σ = ΛΦΛ> + Ψ2 . (2)

The correlated common factors are called oblique. In the sequel, it is assumed that the

common factors are uncorrelated (orthogonal), that is, Φ = Ik. Thus, (2) reduces to

Σ = ΛΛ> + Ψ2 . (3)

Unlike the random EFA model (1), the fixed EFA model considers f to be a vector of

non-random parameters which vary from one case to another (Lawley 1942).

3 Fitting the EFA model in the classical case (n > p)

Let Z be the n × p data matrix collecting n independent centered observations on p(< n)

variables with unit length. According to (1), let F and U denote the matrices of common

and unique factors, respectively. Then, the k-factor model (1) and the related assumptions

from Section 2 imply that EFA represents the data Z as follows:

Z = FΛ> + UΨ , (4)

subject to F>F = Ik, U>U = Ip, U>F = Op×k and Ψ diagonal. (5)

The EFA data representation (4)–(5) implies the following representation of the sample

correlation matrix:

Z>Z = ΛΛ> + Ψ2 . (6)

The equation (6) is fundamental for the standard EFA (with random common factors),

where a pair {Λ,Ψ} is sought which gives the best fit to Z>Z with respect to some discrep-

ancy measure. The process of finding {Λ,Ψ}, for some specified value of k, is called factor

extraction. Various factor extraction methods have been proposed (e.g., Harman 1976; Mu-

laik 1972). If the data are assumed normally distributed the maximum likelihood principle is
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preferred. Then, the factor extraction problem can be formulated as optimization of certain

log-likelihood function equivalent to the following data fitting problem (Mulaik 1972, p. 163):

min
Λ,Ψ

log(det(ΛΛ> + Ψ2)) + trace((ΛΛ> + Ψ2)−1(Z>Z)) , (7)

referred to as maximum likelihood (ML) factor analysis. If nothing is assumed about the

distribution of the data, (7) can still be used as one way of measuring the discrepancy between

the model and the sample correlation matrix. There are a number of other discrepancy

measures which are used in place of (7). A natural choice is the LS approach for fitting the

EFA model. It can be formulated as the following general class of weighted LS problems

(Bartholomew and Knott 1999, pp. 53–56):

min
Λ,Ψ

||(Z>Z−ΛΛ> −Ψ2)Γ||2F , (8)

where||X||F =
√

trace(X>X) denotes the Frobenius norm of a matrix X and Γ is a matrix

of weights. The case Γ = Σ−1 is known as generalized least squares (GLS) factor analysis.

If Γ = Ip, (8) reduces to an unweighted least squares (ULS) factor analysis. The standard

numerical solutions of the ML, ULS and GLS factor analysis are iterative, usually based on

a gradient or Newton-Raphson procedure.

Suppose that a pair {Λ,Ψ} is obtained by solving the factor extraction problem. Then,

common factor scores can be computed as a function of Z, Λ and possibly Ψ in a number of

ways (Harman 1976; Mulaik 1972).

In formulating EFA models with random or fixed common factors, the standard approach

is to embed the data in a replication framework by assuming the observations are realizations

of random variables. Instead, De Leeuw (2004) formulated the EFA model (4) as a specific

data matrix decomposition. Then, the EFA problem is to minimize the following least squares

goodness-of-fit criterion:

f(F,Λ,U,Ψ) = ||Z− FΛ> −UΨ||2F , (9)

subject to F>F = Ik, U>U = Ip, U>F = Op×k and Ψ diagonal. (10)

De Leeuw (2004) proposed an alternating least squares (ALS) algorithm to minimize (9)

– (10). The idea is that for given or estimated Λ and Ψ, the common and unique factor
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scores F and U can be found simultaneously by solving a Procrustes problem. Indeed, let

B = [F U] and A = [Λ Ψ] be block matrices with dimensions n× (k + p) and p× (k + p).

Note that (10) implies B>B = Ip+k. Then (9) can be rewritten as:

f =
∣∣∣∣Z−BA>∣∣∣∣2

F
= ||Z||2F + trace(AB>BA>)− 2 trace(B>ZA) . (11)

Minimizing (11) subject to B orthonormal is a standard Procrustes problem. The mini-

mization of f in (11) is equivalent to the maximization of trace(B>ZA) (for given or estimated

A). Solution of this maximization problem is given by B = QP>, where ZA = QDP> is

the ‘economy’ SVD (33) of ZA. As shown in the Appendix, this solution is not unique for

n > p, as rank(ZA) ≤ min{rank(Z), rank(A)} = p < k + p.

Once an orthonormal B is found for given or estimated A(= [Λ Ψ]), i.e. new F and U

are available, update Λ = Z>F and Ψ = diag(U>Z), making use of the identities:

F>Z = F>FΛ> + F>UΨ = Λ>, (12)

U>Z = U>FΛ> + U>UΨ = Ψ (and thus diagonal) , (13)

which follow from the EFA model (4) and the imposed constraints. The ALS procedure of

finding {F,U} and {Λ,Ψ} continues until certain convergence criterion is met. It can be

summarized in the following algorithm EFALS:

F ← rand(n, k)− .5 , U ← rand(n, p)− .5;

Λ ← Z>F , Ψ ← diag(U>Z) , A ← [Λ Ψ];

fold = ||Z||2F , f = ||Z−BA>||2F ;

while |fold − f | > 10−6

B ← QP>, where ZA = QDP> is the economy SVD of ZA;

F ← B(:, 1 : k);

U ← B(:, k + 1 : k + p);

Λ ← Z>F , Ψ ← diag(U>Z) , A ← [Λ Ψ];

fold = f, f = ||Z−BA>||2F ;

end while
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Assuming that rank(Z) ≥ k, the EFALS update of Λ (= Z>F) gives in general rank(Λ) ≤
min{rank(Z), rank(F)} = k. It will be shown in Section 5 that, in fact, the updating formula

Λ = Z>F secures that rank(Λ) = k.

4 Generalized EFA for both p < n and p ≥ n

If p ≥ n, the most common factor extraction methods, such as ML factor analysis or GLS

factor analysis, cannot be applied. Robertson and Symons (2007) consider maximum likeli-

hood fitting of rank-deficient sample correlation matrix by the EFA correlation structure (6).

They try to approximate a singular symmetric matrix Z>Z by a positive definite one having

the specific form ΛΛ> + Ψ2 imposed by EFA and assuming Ψ2 p.d. Alternatively, one can

employ ULS factor analysis (8).

However, there is a conceptual difficulty to adopt these two approaches to EFA. When

p > n, the rank of U can be at most n and the constraint U>U = Ip cannot be fulfilled

any more. The rest of the classic EFA constraints F>F = Ik and U>F = Op×k remain valid

when p ≥ n. Moreover, they imply that rank(U) ≤ n − k (Horn and Johnson 1986, 0.4.5

(c)). Thus, the classical EFA correlation structure (6) turns into

Z>Z = ΛΛ> + ΨU>UΨ . (14)

For p > n, the correlation structure (14) coincides with the classical one (6), if the more

general constraint U>UΨ = Ψ is introduced in place of U>U = Ip.

Lemma 4.1. If p > n, U>UΨ = Ψ implies that Ψ2 is positive semi-definite (p.s.d.)

Proof : A product of symmetric and diagonal matrix with non-zero entries can be

diagonal only if the symmetric matrix is diagonal too. If it is assumed that Ψ2 > O, then

U>UΨ = Ψ implies U>U = Ip, which contradicts to rank(U>U) ≤ n− k. Thus, Ψ should

have zero entries, i.e. Ψ2 ≥ O. ¥
Lemma 4.1 shows that if p > n, then variables with zero unique variances necessarily

exist, i.e. unique factors with zero variances should be accepted in the EFA model. This

proves that the EFA modification by Robertson and Symons (2007) requiring Ψ2 p.d. for

the case p ≥ n, is in fact not consistent with the EFA model (4).
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Let r denote the number of the zero entries in Ψ, i.e. rank(Ψ) = p − r. Assume

for simplicity, that the corresponding r variables with zero unique variances are the first r

variables. Then U can be partitioned as U = [U1 U2], where U1 and U2 are block-matrices

of sizes n × r and n × (p − r), respectively. Similarly Ψ =


 Ψ1 Or×(p−r)

O(p−r)×r Ψ2


, where

Ψ1 ≡ Or. Then, the condition U>UΨ = Ψ can be rewritten as:

U>UΨ =


 U>

1

U>
2




[
U1 U2

]

 Ψ1 Or×(p−r)

O(p−r)×r Ψ2


 ,

=


 U>

1 U1 U>
1 U2

U>
2 U1 U>

2 U2





 Ψ1 Or×(p−r)

O(p−r)×r Ψ2


 ,

=


 U>

1 U1Ψ1 U>
1 U2Ψ2

U>
2 U1Ψ1 U>

2 U2Ψ2


 =


 Ψ1 Or×(p−r)

O(p−r)×r Ψ2


 = Ψ. (15)

By construction Ψ1 ≡ Or, and the constraint (15) reduces to: U>
1 U2Ψ2 = Or×(p−r) and

U>
2 U2Ψ2 = Ψ2. As Ψ2

2 > 0, they imply that U>
1 U2 = Or×(p−r) and U>

2 U2 = Ip−r. As U2

is a submatrix of U and rank(U) ≤ n − k, it also follows that p − r ≤ n − k. Then one

finds that r ≥ p− n + k > k, i.e. the number of the variables with zero unique variances will

always be greater than the chosen common factors number, if p > n. Moreover, from the

factor analysis equation (4) and assuming that rank(Z) = n − 1 as Z is centered, one finds

that (Horn and Johnson 1986, 0.4.5 (d)):

n− 1 ≤ rank(FΛ> + UΨ) ≤ rank(FΛ>) + rank(UΨ) ≤ k + p− r ,

i.e. r ≤ p−n+ k + 1. This shows that for given n, p and k, the number of the variables with

zero unique variances may take only two values, as r ∈ [p− n + k, p− n + k + 1]. Of course,

if rank(Z) < n− 1, then the number of zeros r may increase.

There is a long standing debate in classical EFA (n > p) about the acceptance of zero

entries in Ψ2 commonly referred to as ‘Heywood’ cases. Some authors argue that in such sit-

uations the Heywood case variable is explained entirely by the corresponding common factor

(e.g., Bartholomew and Knott 1999, p. 61), while others find it unrealistic (e.g., Anderson

1984, pp. 561–562), and require Ψ2 to be p.d. It turns out, that an EFA model covering

both cases p ≥ n and n > p should accept Ψ2 being p.s.d. The following generalization of
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the classical EFA model (4) – (5):

Z = FΛ> + UΨ , (16)

subject to F>F = Ik, U>UΨ = Ψ, U>F = Op×k and Ψ diagonal , (17)

covers both cases p ≥ n and n > p. From now on, it is called for short the GEFA model.

Note, that GEFA implies the same identities as for the classical case (n > p):

F>Z = F>FΛ> + F>UΨ = Λ>, (18)

U>Z = U>FΛ> + U>UΨ = Ψ (and thus diagonal) . (19)

Lemma 4.2. If n < p + k, the k−factor GEFA constraints F>F = Ik and U>F = Op×k are

equivalent to the constraint FF> + UU> = In and rank(F) = k.

Proof : According to U>F = Op×k, the columns of U should be in the nullspace of F in

Rn. Denote by F⊥ the n× (n− k) matrix containing an orthonormal basis of the nullspace

of F in Rn, where F⊥ can be found by the QR factorization of F:

F = QR =
[

F F⊥
]

︸ ︷︷ ︸
Q


 Ik

O(n−k)×k




︸ ︷︷ ︸
R

, (20)

where Q is orthogonal and R is an upper triangular matrix. Then, there exists a full row-rank

(n−k)×p matrix Ũ such that U = F⊥Ũ. As Ũ can be chosen orthonormal, i.e. ŨŨ
>

= In−k,

then it follows that UU> = F⊥F>⊥, and FF>+F⊥F>⊥ = In implies FF>+UU> = In. In other

words, the constraints F>F = Ik and U>F = Op×k can be combined into a new constraint

FF> + UU> = In.

The converse is also true. Indeed, UU> = In − FF> = F⊥F
>
⊥ gives that

F> − F>FF> = (Ik − F>F)F> = F>F⊥F
>
⊥ = Ok×n ,

and

U> −U>FF> = U>F⊥F
>
⊥ = Ũ

>
F>⊥F⊥F

>
⊥ = Ũ

>
F>⊥ = U> ,

i.e. (Ik − F>F)F> = Ok×n and U>FF> = Op×n, which imply that In − F>F = Ok and

U>F = Op×k as F> has full row rank. ¥
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Lemma 4.3. FF> + UU> = In does not imply U>UΨ = Ψ.

Proof : The new constraint FF> + UU> = In simply gives the identity U = UU>U,

which multiplied by Ψ leads to

UΨ = UU>UΨ ⇒ U(Ψ−U>UΨ) = On×p . (21)

Since U has not full column rank, (21) demonstrates that the constraint U>UΨ = Ψ

does not necessarily follow from FF> + UU> = In and must be imposed separately. ¥
Thus, the GEFA model (16) – (17) requires the minimization of:

f(F,Λ,U,Ψ) = ||Z− FΛ> −UΨ||2F , (22)

subject to rank(F) = k, FF> + UU> = In ,U>UΨ = Ψ(diagonal). (23)

Let B = [F U] and A = [Λ Ψ] be block matrices with dimensions n × (k + p) and

p× (k + p). Then, for given A the following problem:

min
B

∣∣∣∣Z−BA>∣∣∣∣2
F

, subject to BB> = In , (24)

is a standard Procrustes problem, i.e. its solution is found by maximizing trace(B>ZA).

The loss function
∣∣∣∣Z−BA>∣∣∣∣2

F
= ||Z||2F + trace(B>BA>A)− 2 trace(B>ZA) contains two

terms depending on B, because B>B is not an identity matrix as in (11). Nevertheless,

making use of the constraint U>UΨ = Ψ (diagonal), one can see that

trace(B>BA>A) = trace






 F>

U>




[
F U

]

 Λ>

Ψ




[
Λ Ψ

]


 ,

= trace






 Ik Ok×p

Op×k U>U





 Λ>Λ Λ>Ψ

ΨΛ Ψ2






 ,

= trace






 Λ>Λ Λ>Ψ

U>UΨΛ U>UΨ2






 ,

= trace(Λ>Λ) + trace(Ψ2) , (25)

i.e. trace(B>BA>A) does not depend on F and U. Thus, the solution of (24) is equivalent to

the maximization of trace(B>ZA) and simply requires the ‘economy’ SVD of A>Z>. After

solving (24) for B = [F U], the values of Λ and Ψ are updated making use of the identities
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(18) and (19). The ALS procedure of finding {F,U} and {Λ,Ψ} continues until certain

convergence criterion is met. It can be summarized in the following algorithm GEFALS

containing EFALS as a subset:

F ← rand(n, k)− .5 , U ← rand(n, p)− .5;

Λ ← Z>F , Ψ ← diag(U>Z) , A ← [Λ Ψ] ;

fold = ||Z||2F , f = ||Z−BA>||2F ;

while |fold − f | > 10−6

if n ≥ p + k

B ← QP>, where ZA = QDP> is the economy SVD of ZA;

else

B ← PQ>, where A>Z> = QDP> is the economy SVD of A>Z>;

endif

F ← B(:, 1 : k);

U ← B(:, k + 1 : k + p);

Λ ← Z>F , Ψ ← diag(U>Z) , A ← [Λ Ψ] ;

fold = f, f = ||Z−BA>||2F ;

end while

If the k-factor GEFA model holds then it also holds if the loadings are rotated. Let T be

an arbitrary orthogonal k × k matrix. Then, (4) may be rewritten as

Z = FTT>Λ> + UΨ , (26)

which is a model with loading matrix ΛT and common factors FT. The assumptions on the

EFA parameters are not violated by this transformation. Thus, any matrix ΛT gives the

same model fit if one compensates for this rotation in the scores.

For interpretational reasons and to avoid this rotational indeterminacy, the property

rank(Λ) = k can be accomplished by having Λ in the form of a p × k lower triangular
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matrix L, with a triangle of k(k − 1)/2 zeros. Such kind of reparametrization is mentioned

by Anderson and Rubin (1956) and is first employed for EFA by Trendafilov (2005). Clearly,

if lower triangular loadings matrix L is adopted in the GEFA model, the only indeterminacy

left is simultaneous changes of the signs of L and F, which do not alter their interpretation

and the model fit. Then, the original GEFA loss function (22) modifies to:

f(L,Ψ,F,U) =

∣∣∣∣∣∣

∣∣∣∣∣∣
Z− [F U]


 L>

Ψ




∣∣∣∣∣∣

∣∣∣∣∣∣

2

F

, (27)

and is minimized subject to the GEFA constraints (23). GEFALS solves this modified

problem by simply replacing the updating formula Λ ← Z>F with L ← tril(Z>F), where

tril() is the operator taking the lower triangular part of its argument.

5 Convergence properties of GEFALS

The GEFA objective function decreases at each GEFALS step. Thus GEFALS is globally

convergent algorithm, that is, it converges from any starting value. Let the GEFA parameters

indexed by 0 and + denote their old and updated values. Then, the solution B+ of the

Procrustes problem (24), reduces the GEFA objective function as follows:

f(A0,B0) = ||Z−B0A
>
0 ||2F ≥ ||Z−B+A>

0 ||2F = f(A0,B+) , (28)

where B+B>
+ = In. Note, that the formulation of the Procrustes problem (24) is based on

the constraint U>UΨ = Ψ (diagonal) as shown in (25). The solution (update) B+ is global

(at each step) and is given by the SVD of a rank deficient matrix. Unfortunately, such a

global solution is not unique as demonstrated in the Appendix.

With available update B+, the GEFA objective function (28) turns into

f(A0,B+) = f(F+,Λ0,U+,Ψ0) = ||(Z− F+Λ>
0 )−U+Ψ0||2F , (29)

which is a function of Λ0 and Ψ0 only. For fixed Ψ0, the minimization of (29) is equivalent

to the minimization of

φ(Λ) = traceΛ>Λ− 2traceΛ>Z>F+ .
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Lemma 5.1. φ(X) = traceX>X + traceA>X is strictly convex on Rp×k for any A ∈ Rp×k.

Proof : The Hessian of φ(X) is Ipk. ¥
As the gradient of φ(Λ) is ∇ = Λ − Z>F+, Lemma 5.1 implies that φ(Λ) has global

minimum in Rp×k attained at Λ+ = Z>F+. As Rp×k is convex one is tempted to say that

Λ+ = Z>F+ is the unique minimizer of φ(Λ). However, it is easy to see that Λ+Q> =

Z>F+Q> is a minimizer too, for any orthogonal Q. To clarify this, note that Λ+ = Z>F+ is

also a solution of the first order optimality conditions:

F>+ZΛ be symmetric, and (Ip −Λ(Λ>Λ)−1Λ>)Z>F+ = Op×k , (30)

for the minimizers Λ of φ(Λ) over the nonconvex noncompact Stiefel manifold ST(p, k) ⊂
Rp×k of all p × k matrices of rank k. This explains why Λ+ = Z>F+ is not the unique

minimizer of φ(Λ), and why it has full column rank k. Hence, (29) can be reduced to

f(F+,Λ0,U+,Ψ0) = ||(Z− F+Λ>
0 )−U+Ψ0||2F ≥ ||(Z− F+F>+Z)−U+Ψ0||2F

= f(F+,Λ+,U+,Ψ0) . (31)

Finally, an update of Ψ0 is needed which further reduces (31). The minimization of (31)

is equivalent to the minimization of

ϕ(Ψ) = trace(ΨU>
+U+Ψ)− 2trace((Z− F+F>+Z)>U+Ψ)

= trace(Ψdiag(U>
+U+Ψ))− 2trace(diag((Z> − Z>F+F>+)U+)Ψ)

= traceΨ2 − 2trace(diag(Z>U+)Ψ) ,

and, by Lemma 5.1, its unique minimum is attained for Ψ+ = diag(Z>U+). Then:

f(F+,Λ+,U+,Ψ0) ≥ ||(Z− F+F>+Z)−U+diag(U>
+Z)||2F =

||Z− F+Λ>
+ −U+Ψ+||2F = f(F+,Λ+,U+,Ψ+) .

The updates Λ+ and Ψ+ are global minimizers at each step. Thus, GEFALS globally

minimizes the GEFA objective function, i.e. starting from any initial point. Note that the

above derivations make use of F>+F+ = Ik and F>+U+ = Ok×p, and impose the constraint

U>
+U+Ψ = Ψ (diagonal).
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In general, the convergence of the objective function does not guarantee convergence of

the parameters. The convergence of the updates B is guaranteed as the set of all B for which

BB> = In is compact, and the objective function f is continuous. The convergence of the

updates Λ and Ψ is less obvious as Λ stays on the noncompact Stiefel manifold ST(p, k) and

Ψ – on Rp. To see this, consider the following general inequality ||x − y|| ≥ | ||x|| − ||y|| |,
which is true for any x,y, and any norm. Its application gives:

||(Z−UΨ)− FΛ>||2F ≥ (||Z−UΨ||F − ||FΛ>||F )2 = (||Z−UΨ||F − ||Λ||F )2 ,

and

||(Z− FΛ>)−UΨ||2F ≥ (||Z− FΛ>||F − ||UΨ||F )2 = (||Z− FΛ>||F − ||Ψ||F )2 ,

which show that f → ∞, when ||Λ||F → ∞ and ||Ψ||F → ∞, respectively, and the rest of

the parameters are fixed. Then, it follows that all level sets of f(Λ) and f(Ψ) are bounded

(Ortega and Rheinboldt 1970, 4.3.2). By definition, they are also closed, as f is continuous,

and thus, compact. Hence, global minimizers of f(Λ) and f(Ψ) exist. As discussed before,

the global minimizer of f(Ψ) is unique, and there is no unique global minimizer of f(Λ).

However, if Λ is assumed to be lower triangular, then f(L) has a unique minimizer as the

subspace of all lower triangular matrices L(p, k) with rank k is convex.

Finally, it can be shown that GEFALS is a specific gradient descent method. Thus, the

ALS process has linear rate of convergence, as any other gradient method.

Indeed, it has been shown already that the GEFALS updating formulas Λ = Z>F and

Ψ = diag(Z>U) are solutions of the corresponding first order optimality conditions, obtained

from the gradients of the GEFA objective function with respect to Λ and Ψ. Now, consider

the Procrustes problem (24). The gradient of its objective function is ZA. The first order

optimality conditions for the minimizers B of (24) are

ZAB>be symmetric, and ZA(Ip+k −B>B) = On×(p+k) . (32)

It is easy to check that B = (ZAA>Z>)−1/2ZA solves (32) and satisfies BB> = In. Let

ZA = QDP> be the SVD of ZA. Then, after substitution, one finds B = QP>, which is

exactly the standard solution of the Procrustes problem (24).
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6 Applications

All computations are carried out using MATLAB R2009a (Matlab 2009) on a PC under

Windows XP. The codes used in the numerical experiments are available upon request.

6.1 Thurstone’s 26-variable box data

Thurstone collected a random sample of 20 boxes and measured their three dimensions x

(length), y (width) and z (height) (Harman 1976, p.157). In this data set, the boxes consti-

tute the observational units. The variables of the example are twenty-six functions of these

dimensions listed in Table 1. Most of the manifest variables are non-linear functions of the

dimensions of the boxes. However, the linear regression over the values x, y and z which

were used to generate the data is quite satisfying (Jennrich and Trendafilov 2005). Therefore,

the assumption of linearity made in EFA is only mildly violated. Note, that the correlation

matrix given on (Thurstone 1947, p.371) and heavily used in classic EFA is based on 30

boxes, which dimensions are not available.

The observed variables are mean-centered and scaled to have unit norm. They are col-

lected in a 20×26 data matrix Z. The first three eigenvalues of Z>Z (12.4217, 7.1807, 5.5386,

.2963,...) are considerably greater than one, and than the rest ones. Thus, according to the

Kaiser’s criterion three common factors will be sought, i.e. k = 3.

First, standard EFA least squares solutions {Λ,Ψ} are obtained, i.e. by solving (8) with

Γ = Ip. To make these solutions comparable to the ones obtained by the GEFALS, the

following reparameterizations of the classical EFA model are employed.

The eigenvalue decomposition (EVD) reparameterization of the EFA correlation structure

(6) is given as follows (Trendafilov 2003):

Σ = ΛΛ> + Ψ2 = QD2Q> + Ψ2 ,

where QD2Q> is the EVD of the positive semi-definite matrix ΛΛ> of rank at most k. Thus,

the modified EFA problem is to find a triple {Q,D,Ψ}, instead of {Λ,Ψ} as in the classical

case, and is related to the canonical form factor solution (Harman 1976, 8.7).

Similarly, the lower triangular (LT) reparameterization of the EFA correlation structure
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(6) is given as (Trendafilov 2005)

Σ = ΛΛ> + Ψ2 = LL> + Ψ2 ,

where LL> is the Cholesky decomposition of ΛΛ>. Thus, the modified EFA problem is to

find a pair {L,Ψ}, instead of {Λ,Ψ} as in the classical case.

For both reparameterizations, the corresponding LS fitting problems are solved by making

use of the projected gradient approach (Trendafilov 2003, 2005).

Table 1: Standard LS solutions for Thurstone’s 26-variable box data.
EVD LT

reparameterization reparameterization

Variable Λ Ψ2 L Ψ2

x .50 .53 .68 .0054 1.00 0 0 .0011

y .47 .70 -.53 .0058 .25 .97 0 .0015

z -.63 .78 -.00 .0058 .10 .23 .97 .0022

xy .61 .79 -.07 .0089 .68 .73 -.00 .0079

xz -.35 .89 .27 .0108 .49 .20 .84 .0103

yz -.29 .92 -.22 .0132 .19 .60 .77 .0130

x2y .61 .76 .17 .0292 .82 .54 -.00 .0293

xy2 .58 .76 -.25 .0254 .52 .84 -.03 .0256

x2z -.14 .87 .42 .0454 .68 .16 .68 .0455

xz2 -.44 .86 .14 .0449 .33 .25 .88 .0449

y2z -.08 .92 -.30 .0570 .25 .73 .59 .0570

yz2 -.42 .87 -.14 .0540 .16 .46 .84 .0541

x/y -.06 -.30 .93 .0420 .44 -.87 -.04 .0423

y/x .07 .27 -.94 .0319 -.47 .87 .01 .0322

x/z .80 -.47 .23 .0927 .31 -.15 -.89 .0929

z/x -.80 .46 -.30 .0665 -.36 .20 .87 .0666

y/z .86 -.28 -.34 .0727 .05 .39 -.88 .0728

z/y -.85 .30 .33 .0789 -.04 -.37 .88 .0791

2x + 2y .61 .78 .09 .0064 .79 .61 .00 .0032

2x + 2z -.09 .88 .46 .0071 .74 .16 .65 .0042

2y + 2z -.09 .93 -.34 .0066 .22 .76 .61 .0033

(x2 + y2)1/2 .61 .75 .23 .0102 .87 .49 -.00 .0094

(x2 + z2)1/2 .18 .79 .58 .0162 .90 .11 .40 .0163

(y2 + z2)1/2 .09 .90 -.42 .0133 .24 .86 .44 .0132

xyz -.11 .98 -.00 .0289 .47 .54 .68 .0290

(x2 + y2 + z2)1/2 .37 .90 .20 .0142 .80 .52 .28 .0142

Then, LS estimations of all GEFA model unknowns are obtained simultaneously, making

use of the new iterative algorithm GEFALS. To reduce the chance of mistaking local with
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global solutions, the algorithm was run twenty times, each with different random starts for the

orthonormal block matrix B = [F U]. The algorithm was stopped when successive function

values differed by less than ε = 10−6. The corresponding results for {Λ,Ψ2} applying two

parameterizations for the loadings are provided in Table 2.

Table 2: GEFALS solutions for the Thurstone’s 26-variable box data.
Λ = Z>F L = tril(Z>F)

error of fit = .175174 error of fit = .175184

Variable Λ Ψ2 L Ψ2

x .99 .17 .02 .0000 1.00 0 0 .0000

y .10 .90 .43 .0000 .25 .97 0 .0000

z .12 -.20 .97 .0000 .10 .23 .96 .0000

xy .55 .76 .33 .0000 .68 .73 -.00 .0000

xz .50 -.11 .85 .0000 .49 .20 .84 .0000

yz .14 .22 .96 .0000 .20 .59 .77 .0000

x2y .72 .62 .25 .0191 .82 .54 -.00 .0191

xy2 .38 .84 .35 .0001 .52 .84 -.03 .0000

x2z .69 -.05 .69 .0198 .68 .15 .68 .0198

xz2 .34 -.12 .92 .0000 .33 .24 .90 .0000

y2z .16 .43 .86 .0298 .25 .73 .60 .0298

yz2 .13 .06 .97 .0000 .16 .45 .85 .0000

x/y .57 -.68 -.42 .0279 .44 -.87 -.05 .0279

y/x -.59 .68 .39 .0290 -.46 .87 .02 .0290

x/z .27 .30 -.86 .0811 .31 -.15 -.89 .0811

z/x -.33 -.26 .87 .0476 -.36 .20 .88 .0476

y/z -.07 .74 -.61 .0566 .04 .40 -.87 .0566

z/y .08 -.72 .62 .0651 -.03 -.38 .88 .0651

2x + 2y .68 .67 .28 .0000 .79 .61 .00 .0000

2x + 2z .75 -.02 .66 .0000 .74 .15 .65 .0000

2y + 2z .14 .44 .88 .0000 .23 .76 .61 .0000

(x2 + y2)1/2 .78 .58 .23 .0000 .87 .49 -.01 .0000

(x2 + z2)1/2 .90 .07 .42 .0001 .91 .10 .39 .0001

(y2 + z2)1/2 .13 .61 .77 .0000 .25 .86 .44 .0000

xyz .41 .26 .86 .0017 .47 .54 .68 .0017

(x2 + y2 + z2)1/2 .72 .47 .49 .0001 .80 .52 .28 .0001

For both algorithms the twenty runs led to the same minimum of the loss function, up to

the third decimal place. Numerical experiments showed that GEFALS with L ← tril(Z>F)

is slower but yields pretty stable loadings. In contrast, GEFALS with Λ ← Z>F is faster, but

converges to quite different Λ. The GEFALS solution with updating Λ ← Z>F reported in

Table 2 is the one that resembles most the GEFALS solution with updating L ← tril(Z>F).
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GEFALS gives the same Ψ2 and goodness-of-fit for both types of loadings. As expected,

GEFALS allows for unique factors with zero variance. In contrast, the classical EFA so-

lutions have positive Ψ2, because the projected gradient algorithm for both EVD and LT

reparameterization is designed to yield p.d. Ψ2 (Trendafilov 2003, 2005).

The algorithms employing LT parameterization give virtually identical loadings. More-

over, the loadings exhibit an interpretable and contextually meaningful relation between the

observed variables and the common factors. If one ignores all loadings with magnitude .25

or less in the LT loadings matrices in Table 1 and Table 2, the remaining loadings perfectly

identify the box dimensions used to generate each of the variables.

6.2 Numerical performance and simulation illustrations

Here, numerical aspects of the GEFALS algorithm are discussed. The simulation experi-

ments provided give some insights on its performance.

In Section 5 it has been shown that the GEFALS decreases the objective function (22)

at each iteration step. Thus, it is a globally convergent algorithm, that is, convergence to a

minimizer is reached independently of the initial value. However, there is no guarantee that

the minimizer found is the global minimum of the problem. The standard remedy in such

situations is to try several runs with different starting values.

Another issue related to the GEFALS performance is that its convergence is linear. This

means that the first few GEFALS steps reduce (22) sharply, which is then followed by a

number of steps with little descent. This is a common weakness of all gradient methods,

which may result in slow convergence. The alternating nature of GEFALS may additionally

worsen the situation. The standard escape is the development of methods, employing second

order derivative information. Their convergence is typically quadratic, i.e. they are faster

than the gradient methods. The weakness of the second order methods is that they are locally

convergent, that is, only a “good” starting value ensures convergence to a local minimum. In

practice, one frequently combines a gradient method – to locate a good starting value, with

a second order method to obtain the solution fast.

While second order methods are not available, a way to speed up the convergence of

GEFALS is to imitate the above strategy: run it first with low accuracy, and use the result
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as a starting value for a second run with high accuracy.

The following simulation experiments illustrate the GEFALS performance. First, the

Thurstone’s 26-variable box data problem is solved by GEFALS using both updating for-

mulas and 100 random starts. The results reported in Table 3 are the mean fit for the 100

runs, its standard deviation (std. dev.), and the minimal and the maximal fit obtained.

Practically, no local minima are found for these data. The updating formula L = tril(Z>F)

gives slightly better results. The average CPU times in seconds required by the two updating

formulas are .014 and .0667, respectively. Using rational starts reduces the CPU times to

.0134 and .0169, respectively. When GEFALS makes use of the updating Λ = Z>F, rational

starts for Λ and F are obtained by the SVD of the data Z. Alternatively, when GEFALS

makes use of the updating L = tril(Z>F), rational starts for L and F are obtained by the

QR decomposition of Z. In both cases, random starts are used for U and Ψ.

Table 3: Results for 100 random starts of GEFALS for Thurstone’s 26-variable box data.
Parameterization mean std. dev. min max

Λ = Z>F .1752 2.3056 10−5 .1751 .1753

L = tril(Z>F) .1752 4.4121 10−7 .1752 .1752

Next, the GEFALS performance is illustrated on random data with n = 25, p = 30 and

four extracted common factors (k = 4). The data are generated as follows. In a first step,

a random n × p matrix Xs is generated using uniform random numbers in [−.5, .5]. Then,

GEFALS is applied on Xs. Let the resulting GEFA parameters be Λs,Fs,Us and Ψs. The

data for the simulation experiment are formed as X = FsΛ
>
s + UsΨs. This matrix X will

be analyzed by GEFALS using either random or rational starts (with random starts for U

and Ψ), and seven different termination criteria listed in Table 4, using different accuracy

and number of iterations. The seventh criterion makes at most 100 iterations requiring the

magnitude of the difference between the consecutive function values to be < 10−4, and then

this accuracy requirement is switched to < 10−6.

For each termination criterion 100 GEFALS runs are made with updating Λ = Z>F,

and using random (rand) and rational (ratio) starts. The reported values in Table 4 are the

mean fit over the 100 runs, its standard deviation, the mean CPU time and the median CPU

time in seconds.
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Table 4: Results for GEFALS (with Λ = Z>F) applied to a random data matrix with

n = 25, p = 30 and k = 4. For each of the listed seven termination criteria 100

rational (ratio) and random (rand) starts are used.

# Termination criterion Start mean std. dev. CPU mean/median

1 (abs(f0 - f)<= 1e-6)|(max_iter>100) ratio .2532 .0086 .1261/.1302

rand .2532 .0080 .1256/.1202

2 (abs(f0 - f)<= 1e-5)|(max_iter>1000) ratio .2493 .0079 .9257/1.1116

rand .2488 .0074 .8717/.9964

3 (abs(f0 - f)<= 1e-6)|(max_iter>1000) ratio .2521 .0085 1.2195/1.3119

rand .2532 .0085 1.2179/1.2919

4 (abs(f0 - f)<= 1e-5)|(max_iter>4000) ratio .2470 .0060 1.3746/.9113

rand .2456 .0045 1.2281/1.0165

5 (abs(f0 - f)<= 1e-6)|(max_iter>4000) ratio .2501 .0076 4.0400/5.1825

rand .2501 .0080 4.0079/5.1825

6 (abs(f0 - f)<= 1e-6) ratio .2461 .0051 13.6353/11.3313

rand .2456 .0039 12.6581/7.5108

7 (abs(f0 - f)<= 1e-4)|(max_iter>100) ratio .2448 .0036 11.8760/8.5072

and followed by (abs(f0 - f)<= 1e-6) rand .2464 .0059 9.8972/6.0136

Table 4 reveals that for the first five criteria there is little difference between the CPU

times when using rational or random starts. However, for the last two criteria the random

starts require less CPU time. The greater median CPU time (than the mean) indicates that

there are fewer runs requiring very little CPU times to converge. Conversely, the smaller

median CPU time indicates that there are fewer runs requiring considerable CPU times to

converge. According to Table 4, very similar (average) fit is obtained by GEFALS when

using different termination criteria. More information about the GEFALS performance

is obtained from the histograms of the fits using different starting values and termination

criteria (see Figure 1).

The histograms in Figure 1 have 20 bins which means that the difference between the fits

allocated into two neighboring bins is between .002 and .004. The histograms show that the

rational starts ensure hitting lower minima more frequently. Moreover, the seventh criterion

gives very good results for about 10–14% less CPU time than the sixth criterion.
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Figure 1: Histograms (with 20 bins) of the minima obtained by GEFALS with the seven

termination criteria listed in Table 4.

6.3 Atmospheric science data

Climate is a natural system that is characterized by complex and high-dimensional phenom-

ena. To improve the understanding of the physical behaviour of the system, it is often useful

to reduce the dimensionality of the data.

Empirical orthogonal function (EOF) analysis, known in statistics as PCA, is among

the most widely used methods in atmospheric science (Hannachi et al. 2007; Jolliffe 2002).

Given any space-time meteorological data set, EOF analysis finds a set of orthogonal spatial

patterns (EOFs), referred to as loadings in PCA, along with a set of associated uncorrelated

time series or principal components, such that the first few principal components account for

as much as possible of the total sample variance.

Unlike PCA, the EFA application in atmospheric science is quite uncommon. Here, GEFA

is applied to data from the National Center for Environmental Prediction/National Center

for Atmospheric Research (NCEP/NCAR) re-analysis project. The data consist of winter

monthly sea-level pressures (SLP) over the Northern Hemisphere north of 20oN. The winter

season is defined by the months December, January and February. The data set spans the

period from December 1948 to February 2006 (n = 174 observations) and is available on a

regular grid with a 2.5o latitude × 2.5o longitude resolution (p = 29× 144 = 4176 variables
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representing gridpoints). The data set was kindly provided by Dr Abdel Hannachi.

Prior to GEFA, the mean annual cycle was calculated by averaging the monthly data over

the years. Anomalies were then computed as departures from the mean annual cycle. To

account for the converging longitudes poleward, an area weighting was finally performed by

multiplying each grid point by the square root of the cosine of the corresponding latitude.

These weighted SLP anomalies are the data analyzed by GEFA.

The new GEFA model is applied with p > n and k = 5, where the five factors account for

60.2% of the total variance of the data. This choice is made to balance between explained

variance and spatial scales. Extracting more factors increases the explained variance but

includes more small scales. Five factors are found to provide a good balance.

For k = 5 and twenty random starts, the procedure required on average 90 iterations,

taking about 20 minutes to converge. The algorithm was stopped when successive function

values differed by less than ε = 10−3. Using a higher accuracy criterion such as ε = 10−6

needed considerably more CPU time but did not change the quality of the solution. Numerical

experiments revealed that the algorithm converges to the same minimum of the loss function,

up to the second decimal place.

For comparison, factorizing a 4176×4176 sample covariance matrix and finding numerical

solution of the LS problem (8) with Γ = Ip by means of an iterative Newton-Raphson

procedure (implemented in SASr) takes about 2.5 hours.

GEFA provides a method of describing spatial patterns of winter sea-level pressures. For

each factor, there is a loading for each manifest variable, and because variables are gridpoints

it is possible to plot each loading on a map at its corresponding gridpoint, and then draw

contours through geographical locations having the same coefficient values. This spatial map

representation greatly aids interpretation, as is illustrated in Figure 2.

For the winter SLP data, the plots represent the first (i) and second (ii) column of the

4176 × 5 loading matrix. These plots give the maps of loadings, arbitrarily renormalized to

give ‘round numbers’ on the contours. Winter months having large positive scores for the

factors will tend to have high SLP values, where loadings on the map are positive, and low

SLP values at gridpoints where the coefficients are negative. The first and second common

factor explains 14% and 13% of the total sample variance, respectively.
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The first pattern (i) shows the North Atlantic Oscillation (NAO). The NAO is a climatic

phenomenon in the North Atlantic Ocean of fluctuations in the difference of sea-level pressure

between the Icelandic low and the Azores high (Hannachi et al. 2007). The second EFA pat-

tern (ii) yields the North Pacific Oscillation (NPO) or Pacific pattern, a monopolar structure

sitting over the North Pacific (Hannachi et al. 2007). For the twenty different random starts,

the obtained GEFA loadings look similar.

It is of interest to compare the spatial patterns obtained by GEFA and by PCA/EOF

analysis. Figure 3 shows the two leading modes of variability of the winter monthly SLP.

They explain 21% (1st EOF) and 13% (2nd EOF) of the total winter variance.

The spatial map (i) shows a low-pressure centre over the polar region and two high-

pressure centres over the Mediterranean/North-east Atlantic and over the North Pacific.

This tripolar structure corresponds to the familiar Annular Oscillation (AO) (Hannachi et al.

2007). Like GEFA pattern (ii), the EOF2 has the NPO with a polar high over the North

Pacific but in addition it also has a low centre over the North-east Atlantic.

Finally, the effect of increasing the number of extracted factors was also studied. With

more extracted factors, the scale of the spatial patterns becomes smaller and more concen-

trated. In particular, the NAO pattern starts to lose its structure.

7 Discussion

The EFA model is reconsidered as a specific data matrix decomposition with fixed unknown

matrix parameters. They are found simultaneously by EFALS algorithm, which fits the EFA

model directly to the data. This is in contrast to the classical EFA, where only estimates of

the factor loadings and unique variances are found by fitting the EFA correlation structure

to the sample correlation matrix.

The classical EFA model is generalized to the GEFA model which allows positive semi-

definite Ψ2. GEFA can be applied to data matrices with either p ≥ n or p < n. All GEFA

parameters are found simultaneously by the GEFALS algorithm, based on SVD, which

makes GEFA a reasonable alternative to PCA.

Since the GEFA model postulates the existence of k common and p unique factors such
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that the p observed variables can be represented as their linear combinations, the scores

of the n observations on the common and unique factors are not uniquely identifiable. In

other words, an infinite set of scores for the common and unique factors can be constructed

satisfying the GEFA model. This form of indeterminacy is known as ‘factor indeterminacy’

(e.g., Mulaik 2005). However, the non-uniqueness of the factor scores in GEFA is not a

problem for GEFALS which finds estimates for all matrix parameters. From this point

of view, the numerical procedure developed in this paper avoids the conceptual problem of

factor score indeterminacy and facilitates the estimation of both F and U.
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Appendix

The following is an amended version of the proposition considered by De Leeuw (2004).

Lemma 7.1. Let X be a m × n (m ≥ n) matrix of rank r (≤ n) and its ‘economy’ SVD

X = UDV> be written in details as follows:

X =


 U1 U2

m× r m× (n− r)







D O

r × r r × (n− r)

O O

(n− r)× r (n− r)× (n− r)







V>
1

r × n

V>
2

(n− r)× n




,

(33)

where U>U = In and V>V = VV> = In. Then

max
Q>Q=In

traceQ>X = traceD

and it is attained for any Q = U1V
>
1 + U2PV>

2 , where P>P = PP> = In−r.
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Proof : By projecting the gradient, X, of the objective function traceQ>X onto Q>Q =

In, one finds the following first order optimality conditions for its maximizer (Trendafilov

2003):

� Q>X be symmetric

� X = QQ>X .

According to the first optimality condition, let S = Q>X be some n×n symmetric matrix.

Then, X = QS and S2 = X>X = VD2V>, and S can be expressed as:

S =


 V1 V2

n× r n× (n− r)







D O

r × r r × (n− r)

O O

(n− r)× r (n− r)× (n− r)







V>
1

r × n

V>
2

(n− r)× n




.

(34)

Let the unknown Q be written as:

Q =


 U1 U2

m× r m× (n− r)







Q1

r × n

Q2

(n− r)× n




. (35)

By making use of (33), (34) and (35), one can see that the identity X = QS implies

Q1V1 = Ir and Q2V1 = O(n−r)×r. Then, it follows that Q1 = V>
1 and Q2 = PV>

2 for any

full rank (n− r)× (n− r) matrix P. Moreover, the identities In = Q>Q = Q>
1 Q1 + Q>

2 Q2

and In = V1V
>
1 + V2V

>
2 show that P>P = In−r. Finally, PP> = In−r follows from the

second optimality condition X = QQ>X, by making use of (33) and (35). ¥
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Figure 2: Spatial map representations of the first (i) and second (ii) column of the EFA

loading matrix for winter SLP data (k = 5).
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Figure 3: Spatial map representations of the two leading EOFs one (i) and two (ii) for winter

SLP data (k = 5). The EOFs have been multiplied by 100.


