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Summary.

We extend Independent Component Analysis, and in particular Fourth-Order Blind Identification, to func-

tional data. Two major problems arise in this extension: (i) the notion of “marginals” is not naturally

defined for functional data and (ii) the covariance operator is, in general, non invertible. These limi-

tations are tackled by reformulating the problem in a coordinate-free manner and by imposing natural

restrictions on the mixing model. The proposed procedure, which involves simultaneous diagonalisation

of second- and fourth-order scatter operators, is shown to be Fisher consistent and affine invariant. A

sample estimator is provided and illustrated on simulated and real datasets. In particular, it is shown to

uncover particular structures that are missed by classical PCA in an Australian precipitation dataset.

Keywords: Affine invariance and equivariance, Coordinate-free approach, FOBI operator, Func-

tional PCA, Hilbert space, Simultaneous diagonalisation

1. Introduction

Independent Component Analysis (ICA) was originally introduced as a technique to isolate several

independent signals based on the data produced by several receivers, which contain the signals only

in mixed forms, a problem sometimes referred to as the cocktail-party problem (Hyvärinen and Oja,
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Bever, The Open University, MCT Faculty, Walton Hall, MK7 6AA, Milton Keynes, United Kingdom.
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2000). From a statistical perspective, ICA can also be viewed as a refinement of Principal Component

Analysis (PCA), in the sense that it can recover the patterns hidden in the higher moments of

random vectors that cannot be identified by classical PCA. Since its introduction, ICA has found

wide application far beyond its original context, such as separating brain activities from artifacts

in Magnetoencephalography data (Vigário et al., 1998), extracting features in financial time series

(Kiviluoto and Oja, 1998), denoising images (Hyvärinen, 1999), and separating users’ signals from

interfering signals in telecommunication (Ristaniemi and Joutsensalo, 1999; Cristescu et al., 2000).

In this paper, we extend ICA to functional data, where the observed units are random functions

rather than random vectors. Functional data are increasingly prevalent in modern research and daily

life. Stock prices, brain signals, daily temperatures and precipitations, and longitudinal studies are

but a few examples of the many forms of functional data arising in modern research. Meanwhile,

devices such as smartphones and smart wristbands make real-time recordings of personal positions,

movements, and vital signs commonplace. The past two decades have seen vigorous developments of

theories and methodologies for processing and analysing functional data. Many statistical methods,

such as linear regression, principal component analysis, canonical correlation, and sufficient dimension

reduction have already been extended to the functional setting. See, for example, Ramsay and

Silverman (2005), Yao, Müller and Wang (2005a,b), Ferraty and Vieu (2006), Horváth and Kokoszka

(2012), Ferré and Yao (2003, 2005), and Hsing and Ren (2009). To distinguish between classical

ICA for random vectors and its extension to functional data considered in this paper, we refer to the

former as classical ICA, and to the latter as functional ICA.

Let X be a p-dimensional random vector, whose entries are statistically dependent, representing

mixtures of independent signals. The classical independent component model assumes the existence

of a nonsingular p× p matrix Ψ such that

X = µ+ ΨZ, (1)

where Z is a random vector whose entries are independent, representing the source signals. The goal

of ICA is then to recover, under this model, a matrix A such that the entries of AX are independent.

This process is called demixing, see Tyler et al. (2009) and Miettinen et al. (2015). Many demixing

methods have been developed for classical ICA and can be roughly divided into three types: (i)

those that are based on higher moments, such as fourth-order blind identification (FOBI, Cardoso,

1989; Oja, Sirkiä and Eriksson, 2006) and joint approximate diagonalisation of eigenmatrices (JADE,

Cardoso and Souloumiac, 1993; Hyvärinen, 1999); (ii) those that are derived from semiparametric

principles (Chen and Bickel, 2006; Samworth and Yuan, 2012); (iii) those that are derived from

invariance arguments and semiparametrically efficient inference and based on multivariate ranks and

signed ranks (Ilmonen and Paindaveine, 2011; Hallin and Mehta, 2015). In this paper we focus on the

extension of the FOBI procedure, which is the original and most commonly used ICA method. FOBI

has a simple structure and its extension is the most transparent. Moreover, the basic idea developed
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for the extension of FOBI can be applied to extend other ICA procedures, such as JADE.

The first conceptual hurdle in our generalisation is that the classical formulation of (1) relies on

the assumption that the entries of the vector Z are independent. This notion of “entries of a vector”

does not arise naturally for random functions and we thus first reformulate the classical ICA in a

coordinate-free manner, so that it no longer relies on the marginals of Z. This reformulation not only

serves as a stepping stone for the extension, but also provides fresh insights into classical ICA itself.

Our overall approach to the generalisation is to replace (i) the Euclidean space in classical ICA

by a Hilbert space of functions on an interval; (ii) moment matrices such as the covariance matrix

by linear operators defined on the Hilbert space and (iii) eigenvectors by eigenfunctions. Essentially,

the process of demixing a random function boils down to that of simultaneous diagonalisation of

two self-adjoint linear operators defined on the functional space in which the random function X

takes values. At the sample level, these operators can be written as finite-dimensional matrices using

coordinate representation, which are then diagonalised simultaneously using linear algebra.

Gutch and Theis (2012) proposes an extension of classical ICA to the case where X is a sequence

of random variables. This is related but different to our generalisation: in our case, the support of

the random function X is an interval rather than the set of natural numbers. In particular, in their

setting, there still exist natural components of Z, and therefore a more immediate analogy to the finite-

dimensional case. Peña et al. (2014) explores an extension of kurtosis to functional data as a way to

identify outliers and cluster structures. Their focus is, however, put on classification, implementation

and theoretical properties under mixtures of Gaussian processes rather than a functional version of

ICA.

The rest of the paper is organised as follows. In Section 2, we give a coordinate-free reformulation

of classical ICA. We then (Section 3) introduce the functional independent component model by

extending the coordinate-free version of (1). While doing so, we also develop machinery and notation

of function spaces, operators, and tensor products that are useful for later discussions. In Section

4, we introduce the FOBI operator and the related FOBI demixing procedure; we also develop the

population-level properties of the FOBI operator. Fisher consistency of the FOBI demixing procedure

(that is, under the functional independent component model, it produces a random function that

has independent components) is established in Section 5, while its affine invariance is discussed in

Section 6. The sample-level implementation of the procedure is developed in Section 7 via coordinate

representations. Its performance on simulated and real datasets is illustrated in Section 8. Finally,

we make some concluding remarks in Section 9, while all proofs are collected in the Appendix.

2. Coordinate-free formulation of classical ICA

In this section, we reformulate the classical independent component analysis (ICA) for random vectors

in a coordinate-free manner, so that it can be generalised to random functions. We also outline a
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corresponding reformulation of the classical FOBI demixing procedure.

Let (Ω,F , P ) be a probability space and let Z : Ω → Rp be a p-dimensional random vector on

(Ω,F , P ). For simplicity and without loss of generality, assume E(Z) = 0. In classical ICA, Z is said

to have independent components if Z1 · · · Zp, where indicates independence and Z1, . . . , Zp

are the components of Z. A random vector X : Ω→ Rp is said to follow an independent component

model with respect to Z if and only if X = ΨZ for some nonsingular matrix Ψ ∈ Rp×p.

The difficulty with generalising ICA to the functional setting using this formulation is that we do

not have a natural analogue of “components” of a random function. Specifically, if Z is a random

function on an interval J ⊂ R, then it is by no means clear what aspects of Z should be regarded as the

“most natural” components of Z. It might be tempting to think of the set of variables {Z(t) : t ∈ J}

as corresponding to Z1, . . . , Zp above. However, because J is an uncountable set, using this analogy is

difficult, involving too many technicalities that may cloud the main idea of the extension. Moreover,

there is no order of importance between Z(t1) and Z(t2) for two points t1, t2 ∈ J , which is important

for our development.

For these reasons, we first reformulate classical ICA in a way that does not rely on Euclidean

coordinates, but rather in terms of any orthonormal basis (ONB) {v1, . . . , vp} in Rp. Recall that our

goal is to find A such that AX = Z, where Z has independent components. Writing B = V A for V =

(v1 · · · vp), it follows immediately that (AX)1 · · · (AX)p is equivalent to (BX)Tv1 · · · (BX)Tvp,

where Y i stands for the ith entry of the vector Y .

This leads to the following definition of independent component model that is not specific to

Euclidean coordinates. In order to generalise to abstract spaces later on, we will adopt the set of

eigenvectors of ΣX = var(X) as natural choice of ONB. To avoid ambiguity caused by multiplicity in

eigenvalues, we say that an ONB {v1, . . . , vp} is a ΣX-ONB if ΣXvi ∝ vi for each i.

Definition 2.1 Suppose E‖X‖2 < ∞ and {v1, . . . , vp} is a ΣX-ONB. We say that X follows an

independent component model if there is a matrix Γ ∈ Rp×p such that

(ΓX)Tv1 · · · (ΓX)Tvp.

If this condition is satisfied then we write X ∼ ICM(Γ).

Note that Γ plays the role of Ψ−1 in the original formulation (1). We now turn to the corresponding

reformulation of the FOBI estimator at the population level. For a generic random vector S ∈ Rp,

define the following matrix-valued function of its fourth moments

fobi(S) = E[(SST)
2
]. (2)

Under reasonably mild conditions it can be shown that, if OΛOT is the spectral decomposition of

fobi(Σ−1/2

X
X), where O is an orthogonal matrix and Λ is a diagonal matrix, then OTΣ−1/2

X
X has

independent components; that is, (OTΣ−1/2

X
X)1 · · · (OTΣ−1/2

X
X)p.



Functional fourth-order blind identification 5

This result can be restated in a coordinate free fashion as follows. For a given ΣX-ONB V =

(v1, . . . , vp), reexpress any vector u ∈ Rp as coordinates relative to the ΣX-ONB; that is, u = V V Tu,

where V Tu are the coordinates of u in the basis {v1, . . . , vp}. The coordinates of X with respect to

this basis are X̃ = V TX. Then finding B such that (BX)Tv1 · · · (BX)Tvp is equivalent to classical

ICA problem of finding B̃ such that (B̃X̃)1 · · · (B̃X̃)p, which can be achieved by the spectral

decomposition of fobi(Σ−1/2

X̃
X̃).

3. Functional independent component model

In order to provide the functional version of Definition 2.1, we now introduce the following notations

and definitions.

Let J denote an interval in R and let H denote a separable Hilbert space of functions from J

to R. Let B be the Borel σ-field generated by the open sets in H , as defined according to its norm

‖ · ‖H = 〈·, ·〉1/2H . A random element X ∈ H is any mapping from Ω to H that is F/B measurable.

We first define the mean and variance of X. The former is a member of H , the latter is a linear

operator from H to H .

Under the assumption E‖X‖H < ∞, the linear functional f 7→ E〈f,X〉H is bounded, because

|E〈f,X〉H | ≤ ‖f‖HE‖X‖H . By Riesz’s representation theorem, there is a member µ of H such that

〈f, µ〉H = E〈f,X〉H . We define µ as the mean of X and write it as EX. Throughout the paper, we

assume EX = 0, the function in H that is everywhere 0. We can do so without loss of generality

because all the operators concerned are invariant under translation X 7→ X + f for any fixed f ∈H .

To define the variance operator of X, we need the notions of tensor product, random operator,

and expectation of a random operator. Let B (H ) be the class of bounded linear operators from H

to H . For f, g ∈H , their tensor product f ⊗ g is the operator H →H : h 7→ 〈g, h〉H f . A random

operator is a mapping from Ω to B (H ) measurable with respect to the Borel σ-field in B (H ). If

W is a random operator such that E‖W‖ <∞, then the mapping (f, g) 7→ E〈f,Wg〉H is a bounded

bilinear form, which induces an operator A ∈ B (H ) such that 〈f,Ag〉H = E〈f,Wg〉H (Conway,

1990, Theorem 2.2). We define A as the expectation of W and write it as EW .

Under E‖X‖2H <∞, the linear operator

E[(X − EX)⊗ (X − EX)] (3)

is bounded since for any f ∈H ,

‖E[(X − EX)⊗ (X − EX)]f‖H = ‖E[(X − EX)〈X − EX, f〉H ]‖H

≤E (|〈X − EX, f〉H | ‖X − EX‖H )

≤E(‖X − EX‖2H )‖f‖H .

The operator (3) is called the variance operator and will be denoted by var(X). This type of con-

struction originated in the functional analysis context by Baker (1973). See also Ferré and Yao (2003)
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and Hsing and Eubank (2015). Moreover, it can be shown (Bonaccorsi and Priola, 2006) that var(X)

is a trace-class operator, that is tr(var(X)) :=
∑
〈var(X)ek, ek〉 is finite for any ONB {ek : k ∈ N0},

if E‖X‖2H <∞.

Similar to the finite-dimensional case, we call an ONB {fi : i ∈ N0} in H a ΣX-ONB if ΣXfi ∝ fi
for each i ∈ N0. By Conway (1990), a ΣX-ONB exists if ΣX is a compact operator, which is true

because ΣX is trace-class. We now define a functional independent component model.

Definition 3.1 Suppose X is a random element in H with E‖X‖2H < ∞ and let {fi : i ∈ N0} be

a ΣX-ONB. We say that X follows a functional independent component model with respect to an

operator Γ ∈ B (H ) if the sequence of random variables

{〈ΓX, fi〉H : i ∈ N0}

is independent. In this case we write X ∼ FICM(Γ).

The ΣX-ONB may not be unique when some of its eigenvalues have multiplicity greater than 1.

In that case we simply choose and fix a ΣX-ONB. If X ∼ FICM(I) for the identity mapping I, then

the set of variables {〈X, fi〉H : i ∈ N0} is independent. Following the tradition of classical ICA, we

say that the random function X has independent components. In this sense, the process of demixing

can be described as finding an operator A ∈ B (H ) such that AX ∼ FICM(I).

There is an additional difficulty in generalising estimators for classical ICA to the functional

setting. Taking FOBI for example, in the classical setting, it relies on the standardised random

vector Σ−1/2

X
X, which has covariance matrix equal to Ip, the p× p identity matrix. In the functional

setting, however, such a standardised random function is not well defined, because ΣX, being a trace-

class operator, cannot be the identity mapping. While it is possible to generalise the notion of a

random function to satisfy this condition, we choose to make an additional assumption to keep the

structure simple.

Let T be a subspace of H . We define B (T ) as the class of all bounded linear operators from T

to T . Let PT be the projection onto T , and QT = I − PT the projection onto T ⊥. We define

B (H |T ) = {PTAPT +QT : A ∈ B (T )}. (4)

B (H |T ) is monotone in T , in the sense that, if T ′ ⊆ T ′′ are subsets of H , then B (H |T ′) ⊆

B (H |T ′′). Moreover, it has upper bound B (H ) (for T = H ), and lower bound {I} (for T = {0}).

In the next definition we impose a strong condition on functional independent component model to

avoid standardisation in H , as mentioned previously.

Definition 3.2 Suppose X is a random element in H with E‖X‖2H < ∞ and let {fi : i ∈ N0} be a

ΣX-ONB. We say that X follows a kth order functional independent component model if there is a

mapping Γ ∈ B (H |T k) such that X ∼ FICM(Γ), where T k is the subspace spanned by f1, . . . , fk. In

this case we write X ∼ FICMk(Γ).
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Note that FICM(Γ) can be rewritten as FICM∞(Γ) and X ∼ FICM0(Γ) if and only if X has

independent components. Also note that stating X ∼ FICM(Γ) for Γ ∈ B (H |T k) or stating

X ∼ FICMk(Γ) is equivalent.

One can interpret the meaning of the additional assumption in Definition 3.2 as follows. For a

gaussian random element X ∈ H , the collection of random variables {〈X, fi〉H : i ∈ N0} is always

independent, because, whenever i 6= j,

cov(〈X, fi〉H , 〈X, fj〉H ) = 〈fi,ΣXfj〉H = 0.

Thus the components that are independent along the eigenfunctions of ΣX are “gaussian like”. In the

signal processing context, gaussian components are usually regarded as uninteresting because they

are isotropic. Thus Definition 3.2 can be interpreted as “there are only finitely many interesting

signals in the random function X”. Besides avoiding the standardisation problem, Definition 3.2 is

a natural mechanism for regularisation. Indeed, ignoring small eigenvalues amounts to removing the

high frequency components of X, which is a form of smoothing.

Our approach in Definition 3.2 places the interesting components of Z in the first k eigenfunctions

of ΣX. This is justified by the fact that Z is an unobserved random function, meaning that Γ can

always be redefined so that the interesting components occur in these eigenfunctions. This also

explains why it is reasonable to choose and fix a set f1, . . . , fk when the eigenvalues of ΣX have

multiplicities greater than 1.

Under the assumption X ∼ FICMk(Γ), our goal is to find an operator A ∈ B (H |T k) such that

AX has independent components. As in classical ICA, we call this process demixing the random

function X and the operator A a demixing operator.

4. Functional FOBI operator and unitary equivariance

Let X be a random element in H such that E‖X‖4H <∞. Then the bilinear form

H ×H → R : (f1, f2) 7→ E〈f1, (X ⊗X)
2
f2〉H

is bounded because, by standard properties of the tensor product (see for example Lemma A.1 in the

appendix) and the Cauchy-Schwarz inequality,

|E〈f1, (X ⊗X)
2
f2〉H | ≤ |E{‖X‖2H 〈f1, (X ⊗X)f2〉H }|

≤ |E{‖X‖2H 〈f1, X〉H 〈f2, X〉H }| ≤ E(‖X‖4H ) ‖f1‖H ‖f2‖H .

This operator is well defined (following the same argument as for the variance operator) and is the

analogue of the FOBI matrix in the functional setting. We give its formal definition.

Definition 4.1 Let X be a random element of H with E‖X‖4H <∞. We call the operator E[(X ⊗

X)2] : H →H the FOBI operator, and write it as fobi(X).
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Like the variance operator, the FOBI operator is a trace-class operator, as shown in the next

theorem.

Theorem 4.2 If E‖X‖4 <∞, then fobi(X) is a trace-class operator.

Operators such as var(X) and fobi(X) can be viewed as mappings from the class of all distribu-

tions of X to B (H ). Such mappings are called (B (H )-valued) statistical functionals. As statistical

functionals, var(X) and fobi(X) both enjoy a type of equivariance that is important for our develop-

ment. This property and its role in classical ICA were extensively studied in Tyler et al. (2009). As

usual, let P ◦X−1 denote the probability measure induced by X. Let A (H ) be a class of operators in

B (H ). For each A ∈ A (H ) and b ∈H , let TA,b be the transformation

H →H : h 7→ Ah+ b.

We now give a formal definition of equivariance of a statistical functional. Recall that the adjoint

operator A∗ of A ∈ B (H ) is defined uniquely through 〈Af, g〉H = 〈f,A∗g〉H .

Definition 4.3 A B (H )-valued statistical functional ν is said to be affine equivariant with respect

to A (H ) if, for every A ∈ A (H ), b ∈H ,

ν(P ◦(AX + b)−1) = Aν(P ◦X−1)A
∗
.

Let U (H ) denote the class of all unitary operators in B (H ). We now show that var(X) and

fobi(X) are equivariant with respect to B (H ) and U (H ), respectively.

Theorem 4.4 Whenever they are defined, var(X) is affine equivariant with respect to B (H ), and

fobi(X) is unitary equivariant with respect to U (H ). Specifically,

(a) for each A ∈ B (H ), b ∈H , var(AX + b) = A var(X)A∗;

(b) for each U ∈ U (H ), b ∈H , fobi(UX + b) = U fobi(X)U ∗.

5. Fisher consistency of functional FOBI

We now establish at the population-level that one can use the spectral decomposition of the FOBI

operator to demix a random function X ∼ FICMk(Γ). This is a form of Fisher consistency since

it means that, when evaluated at the true distribution, the FOBI procedure provides the targeted

parameter, which in our case is the demixing operator.

We need to introduce a few more classes of operators similar to B (H |T ). As a general rule, for

a subset A (H ) of B (H ), let

A (H |T ) = {PTAPT +QT , A ∈ A (T )}. (5)
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Similar to B (H |T ), A (H |T ) is monotone increasing in T with lower bound {I} and upper bound

A (H ). The following special cases will be useful to our discussion. Recall that T k ⊆ H is the

subspace spanned by f1, . . . , fk, the first k members of the ΣX-ONB of H . Let

D (T k) = {
∑k

i=1
di(fi ⊗ fi) : d1, . . . , dk ∈ R},

R (T k) = {
∑k

i=1
di(fi ⊗ fi) : d1, . . . , dk ∈ R, |d1| = · · · = |dk| = 1},

P (T k) = {
∑k

i=1
(fπ(i) ⊗ fi) : π is an injection from {1, . . . , k} to {1, . . . , k}},

U (T k) = the class of unitary operators on T k.

A member of D (T k) resembles a diagonal matrix which diagonal elements d1, . . . , dk; a member

of R (T k) a diagonal matrix whose diagonal elements are either 1 or −1; a member of P (T k) a

permutation matrix; and a member in U (T k) an orthogonal matrix. According to the rule in (5), we

define

D (H |T k), R (H |T k), P (H |T k), U (H |T k). (6)

The next proposition gives some elementary properties of these classes. Their simple proofs are

omitted.

Proposition 5.1 The following statements hold true.

(a) If D1, D2 ∈ D (H |T k), then D1D2 ∈ D (H |T k);

(b) P (H |T k) ⊆ U (H |T k), R (H |T k) ⊆ U (H |T k);

(c) U ∈ U (T k) iff there is an ONB {g1, . . . , gk} of T k such that U =
∑k

i=1
gi ⊗ fi;

(d) U ∈ U (H |T k) iff there is an ONB {g1, . . . , gk} such that

U = PT k
(
∑k

i=1
gi ⊗ fi)PT k

+QT k
=
∑k

i=1
gi ⊗ fi +QT k

.

The next proposition shows that the independent component property in Definition 3.2 is invariant

under transformations in R (H |T k), P (H |T k), and P (H |T k) and their arbitrary compositions.

Proposition 5.2 If X ∼ FICMk(Γ) for some Γ ∈ B (H |T k), then

X ∼ FICMk(RΓ), X ∼ FICMk(DΓ), X ∼ FICMk(ΠΓ).

for any R ∈ R (H |T k), D ∈ D (H |T k), and Π ∈P (H |T k). Consequently, X ∼ FICMk(AΓ), where

A is the product of any permutation of these operators.

For a generic compact and self-adjoint operator A ∈ B (H ) with first k eigenvalues λ1 ≥ · · · ≥ λk,

define its partial power relative to k as

A
α(k)

=
∑k

i=1
λ
α

i
(hi ⊗ hi) +QSk , (7)
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where h1, . . . , hk are eigenfunctions corresponding to λ1, . . . , λk, Sk is the subspace spanned by

h1, . . . , hk, and QSk is the projection onto S ⊥
k

. That is, we only raise to the power α the first k

eigenvalues of A. In this notation, the usual power Aα may be written as Aα(∞). The possibility of

λ1, . . . , λk with multiplicities higher than 1 in Definition (7) is not an issue here since f1, . . . , fk are

chosen and fixed in our construction – as justified in the penultimate paragraph of Section 3.

Fisher consistency of the FOBI procedure for functional data is established in the following theo-

rem.

Theorem 5.3 Assume X ∼ FICMk(Γ), E‖X‖4H < ∞, and kurt(〈ΓX, fi〉), i = 1, . . . , k are distinct

numbers. Let
∑k

i=1
τi(hi ⊗ hi) be the spectral decomposition of

PT k
fobi(Σ

−1/2(k)

X
X)PT k

,

and let V =
∑k

i=1
(hi ⊗ fi) +QT k

. Then {〈V ∗Σ−1/2(k)

X
X, fi〉H : i ∈ N0} is independent.

Proof of Theorem 5.3 relies on the three following lemmas. We state them here as they provide

beneficial understanding on the main steps of the proof. Lemma 5.4 shows that, after partial stan-

dardisation, X and Z only differ by an unitary transformation. Lemma 5.5 shows that if Z has

independent components, then fobi(Z) must be diagonal. This is the key property that leads to

Fisher consistency of the FOBI method. Finally, Lemma 5.6 shows that spectral decomposition of a

particular operator is essentially unique (up to permutation and sign change).

Lemma 5.4 Suppose E‖X‖2H < ∞ and X ∼ FICMk(Γ). Let Z = ΓX. Then there exists U ∈

U (H |Tk) such that Σ−1/2(k)

X
X = UΣ−1/2(k)

Z
Z.

Lemma 5.5 If E‖Z‖4H < ∞ and the sequence of random variables {〈Z, fi〉H : i ∈ N0} is indepen-

dent, then

fobi(Z) =
∑

i∈N0
νi(Z)(fi ⊗ fi), (8)

where νi(Z) = [var(〈Z, fi〉H )]2[kurt(〈Z, fi〉H ) + E‖Z‖2H /var(〈Z, fi〉H )− 1].

Lemma 5.6 Suppose {f1, . . . , fk}, {g1, . . . , gk} and {h1, . . . , hk} are ONBs in T k, and {c1, . . . , ck} and

{d1, . . . , dk} are sets of real numbers, where c1, . . . , ck are distinct. If
∑k

i=1
ci(gi⊗gi) =

∑k

i=1
di(hi⊗hi),

then there exist R0 ∈ R (T k) and Π0 ∈P (T k) such that∑k

i=1
(gi ⊗ fi) =

∑k

i=1
(hi ⊗ fi)R0Π0.

Moreover, {d1, . . . , dk} is a permutation of {c1, . . . , ck}.

We note that, when i > k, 〈V ∗Σ−1/2(k)

X
X, fi〉H reduces to 〈X, fi〉. When i ∈ {1, . . . , k},

〈V ∗Σ−1/2(k)

X
X, fi〉H = 〈Σ−1/2(k)

X
X,V fi〉H = 〈Σ−1/2(k)

X
X,hi〉H := 〈X̃, hi〉H .
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So Theorem 5.3 simply states that the sequence of random variables

〈X̃, h1〉H , . . . , 〈X̃, hk〉H , 〈X, fk+1〉H , . . .

is independent. Because all the interesting signals are assumed to be in the first k components, we

regard random variables 〈X̃, h1〉H , . . . , 〈X̃, hk〉H as the final product of the FOBI demixing procedure.

These variables can be further simplified as follows. Note that

X̃ = [
∑k

i=1
λ
−1/2

i
(fi ⊗ fi) +

∑∞

k+1
(fi ⊗ fi)](

∑
i∈N0
〈X, fi〉H fi),

where λi are eigenvalues of ΣX. Since h1, . . . , hk ∈ T k, they are orthogonal to fi for any i > k.

Consequently,

〈X̃, hi〉H =
∑k

`=1
λ
−1/2

`
〈X, f`〉H 〈f`, hi〉H , i = 1, . . . , k.

These formulae will prove convenient for constructing the FOBI-demixed random variables at the

sample level, in Section 7 below.

We finish this section by commenting on the distinct kurtoses assumption in Theorem 5.3. From

the proof of Theorem 5.3, it is easy to see that all components with common kurtosis (in particular,

all gaussian components) will be indistinguishable by the FOBI operator. In such a case, the spectral

decomposition is no longer unique up to permutation or sign changes but also invariant under orthog-

onal transformation within the subspace spanned by these components. As a result, the components

obtained from FOBI might not be independent, but will span the same subspace as components with

common kurtosis do. This is a well-known property of FOBI (see, for example, Miettinen et al.

(2015)). For simplicity, Theorem 5.3 and subsequent results are stated with the distinct kurtoses

assumption, but can be easily generalised to common kurtoses in the obvious way.

6. Affine invariance of the FOBI demixing procedure

In Theorem 4.4 we showed that the FOBI operator is equivariant under any unitary transformation.

Since the random function resulting from the FOBI demixing procedure is V ∗Σ−1/2(k)

X
X, it is of

interest to ask whether this random function also enjoys a degree of invariance. For ease of reference,

we refer to the random function V ∗Σ−1/2(k)

X
X as the FOBI transformation of X, and denote it by

fobit(X). It turns out that fobit(X) enjoys a stronger form of invariance than fobi(X) itself: fobi(X)

is equivariant under transformations in the unitary class U (H ), whereas fobit(X) is invariant under

transformations in B (H |T k).

Theorem 6.1 Suppose

a. X is a random function in H with E‖X‖4H <∞ and {fi : i ∈ N0} is a ΣX-ONB;

b. X ∼ FICMk(Γ) for some Γ ∈ B (H |T k);
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c. kurt(〈ΓX, fi〉H ), i = 1, . . . , k are all distinct.

Then, for any injective operator A ∈ B (H |T k), we have fobit(AX) = fobit(X).

Note that this theorem hinges crucially on the IC assumption on X (see Lemma 5.4) as, for a

general random function X, fobit(X) and fobit(AX) might differ. This is in clear parallel with the

multivariate case, where the scatter matrix functional fobi(S) = E[(SST)2] is orthogonally equiv-

ariant and the resulting fobit procedure is fully affine invariant under the IC model. Replacing

fobi(X) = E[(SST)2] by its fully affine equivariant version E[(SΣ−1S ST)SST] provides an affine equiv-

ariant procedure for any random vector S. In our functional case, however, such an affine equivariant

operator does not exist, since standardisation of X cannot be achieved.

7. Estimation

We turn now to the sample estimation procedure for functional ICA based on FOBI. The general

principle here, as often, is to replace, wherever possible, the true distribution of X(·) by its empirical

distribution generated by n independent copies X1(·), . . . , Xn(·). A further particularity of functional

data is the fact that observations are only measured finitely many times on J , leaving the user with

a sample {
Xi,tj

= Xi(tj) : i = 1, . . . , n; j = 1, . . . , Ti
}
,

rather than the functions themselves. The first step in any statistical procedure dealing with func-

tional data is therefore to reconstruct Xi(t) based on its measurements. This is typically achieved

by selecting a basis {φi(t) : i ∈ N0} of H and, denoting Hm = {
∑m

i=1
ciφi(t) : (c1, . . . , cm) ∈ Rm}, by

assuming that Xi(t) belongs to Hm, the subset of H spanned by the first m basis elements. The

reconstructed curves are X̂i(t) =
∑m

i=1 ĉiφi(t), for

(ĉ1, . . . , ĉm) = argmin
(c1,...,cm)

∑Ti
j=1

(
Xi,tj

−
∑m

i=1
ciφi(tj)

)2
.

The nature of the data and personal preferences allow for a guided choice of basis functions and m.

Ramsay and Silverman (2005) and Ferraty and Vieu (2006), for example, make abundant use of

Fourier or spline bases.

For any f =
∑m

i=1
ciφi(t) ∈ Hm, we call (c1, . . . , cm)T its coordinates and write them as [f ].

For a linear operator A : Hm → Hm, [A] denotes its matrix of coordinates, which is the m × m

matrix ([Aφ1], . . . , [Aφm]). In particular, we have [Af ] = [A][f ] for any A ∈ B (Hm), f ∈ Hm. Let

EnX̂ = n−1
∑n

i=1
X̂i, and let

ΣX̂ = varn(X̂) = n
−1
∑n

i=1
(X̂i − EnX̂)⊗ (X̂i − EnX̂).

Let X̃ = Σ−1/2(k)

X̂
(X̂ − EnX̂). Lemma 7.1 below provides the eigendecomposition of fobin(X̃) =

En[(X̃ ⊗ X̃)2] based on its coordinates in Hm.
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Lemma 7.1 The following holds:

(a) [ΣX̂] = varn([X̂]) and [Σα(k)

X̂
] =

∑k

i=1
λα
i
[fi][fi]

T +
∑r

i=k+1
[fi][fi]

T, where r is the rank of ΣX̂, {λi}

are the eigenvalues of ΣX̂, {fi} are the eigenfunctions of ΣX̂.

(b) A function f is an eigenfunction of ΣX̂ if and only if [f ] is an eigenvector of varn([X̂]). A

function g ∈ Hm is an eigenfunction of fobin(X̃) if and only if the vector [g] is an eigenvector

of fobin([X̃]) = En(([X̃][X̃]T)2).

(c) Denoting by u1, . . . , uk and v1, . . . , vk the first k eigenvalues of varn([X̂]) and fobin([X̃]), respec-

tively, the ith demixed variable is given by

([X̂]− En[X̂])T(
∑k

l=1
λ
−1/2

`
u`u

T
`
)vi.

Algorithmically, it can therefore be seen that the demixed components result from conducting

FOBI on the first k standardised principal scores of X̂. The choice of k is guided by the natural

limitations of conducting PCA: take k large enough to explain most of the variance (say, 99%), but

not too large to cause estimation inaccuracies in λ−1/2

`
.

8. Simulation and application

In this section, the FOBI procedure is applied to several datasets and its usefulness is shown. We

start with simulated data before turning to a real dataset.

8.1. Simulated dataset

We first illustrate the use of functional FOBI (hereafter FFOBI) and compare the components ob-

tained to the principal scores given by functional PCA (FPCA). To this end, an i.i.d. sample

X1, . . . , Xn is generated from a random function X on [0, 1], which is defined as X(t) =
∑m0

`=1
C`φ0,`(t),

where {φ0,` : ` = 1, . . . ,m0} is the Fourier basis

{1, cos(2πt), sin(2πt), . . . cos(2r0πt), sin(2r0πt)}, where 2r0 + 1 = m0,

with m0 = 15, r0 = 7 and different values of n – namely, n = 500, n = 2000 and n = 5000 respectively.

The coefficient vector C = (C1, . . . , Cm0
)T follows an IC model and is constructed as AρZτ , where

Aρ =
(
diag(A4, |ρ|I(m0−4))

)1/2
, for A4 a 4× 4 matrix with diagonal 1 and off-diagonal elements ρ and

the components Zi of Z are independent power exponential random variables with density

f
Z
i(x) =

βi
2αiΓ(1/βi)

exp{−(|x|/α)βi},

where Γ(x) is Euler’s Gamma function. The shape parameters αi and βi are uniquely chosen such

that Zi has variance 1 and βi := βi(τ) = 1 + 2τi. Note that, in this case, kurt(Zi) = κ(βi), where
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κ(x) = (Γ(5/x)Γ(1/x))/(Γ(3/x)2). It is easy to see that κ(x) is monotonely decreasing in x and

converging to a constant.

The mixing matrix is such that the covariance matrix of C has eigenvalues 1 + 3ρ (associated

to the direction (1T
4, 0

T
4)

T), (1 − ρ) and ρ of respective multiplicities 1, 3 and (m0 − 4), the latter

being associated to the last (m0 − 4) “noise” components. The correlation ρ controls the relative

weight given to the first eigendirection in the signal. It is taken within [−1/3, 1/2] to ensure positive

definiteness of the scatter operator and a variance of the noise smaller than that of the signal.

The rationale behind the choice of parameters is the following: for τ = 0, all the components

have the same kurtosis. As τ increases, the difference ∆i(τ) = κ(βi(τ)) − κ(βi−1(τ)) between the

kurtoses changes. And, although ∆2(τ) is monotonely increasing, this is not so for ∆i(τ), i ≥ 3,

where separation initially increases before decreasing again, therefore varying the difficulty of the

separation problem.

This simulation aims at measuring how both methods are reconstructing the original independent

components. To do so, we generate 500 datasets and measure in each case the minimum distance

correlation index between the obtained (FPCA or FFOBI) components and the original (Z1, · · · , Zk)

as

C(Y, Z) =
1√
k

min
L,P
‖LPR− I‖ ,

where R is the correlation matrix between the random vectors Y and Z, P is a permutation matrix

and L is a sign-changing matrix (i.e. diagonal with entries +1 or −1). See, for example, Nordhausen

et al. (2011). Note that, in the functional case covered in this paper, this criterion not only measures

the performance of the procedure under consideration but also the good reconstruction of the signal

subspace, as different choice of bases might lead to different performances.

To ensure an independent choice of test basis, we used Hm generated by the first m = 10 spline

basis functions, together with k = 4. Results were actually very similar for all classical bases (Fourier,

spline, polynomial, exponential, etc.; the impact of not knowing the basis being negligible) and values

of k ≥ 4 (understandably, k too small may not permit correct recovery of the signal components).

Figure 1 shows the mean value of C(Y,Z) for Z as above and Y being either FPCA or FFOBI

scores for (i) a fixed value of ρ0 = 0.4 and equally spaced values τ = 0, 0.005, 0.01, · · · ranging in [0, 1]

and (ii) a fixed value of τ0 = 0.5 and ρ = −0.3,−0.29, · · · varying in its domain.

Note that the principal directions given by the covariance operator of X are not independent in

this example. This is indeed confirmed by the overall poor performance of FPCA, for any value

of τ and ρ. Note also that, when ρ gets closer to 0, the noise component disappears, so that the

signal subspace is correctly reconstructed. FPCA still fails, however, to reconstruct the independent

directions.

From both panels, we see that FFOBI reconstructs the original components quite well, using

the fourth moments information to further rotate in the signal subspace. Interestingly, this good
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Fig. 1. Mean value of C(Y,Z) for (left) fixed ρ0 = 0.4 and τ ∈ [0, 1] and (right) fixed τ0 = 0.5 and ρ ∈ [−0.3, 0.5].

In both plots, plain lines are for Y being the FPCA scores and dashed lines for Y obtained from FFOBI. In

both cases, k = 4.

performance holds for most values ρ, not just for those near 0, where the noise is absent. To illustrate

this fact, the value ρ0 chosen in the left panel is close to one of the boundaries and of comparable

performance to those obtained with ρ closer to 0. This overall good performance is again illustrated in

the right panel, where, for a fixed value of the shape parameter, FFOBI and FPCA behaves similarly

for all values of ρ within the domain. Also, we see from the left panel that the minimum distance index

is lowest when the values of the kurtoses are well separated. As n increases, consistent estimation of

κ(βi) results in a decrease in the mean index.

Summarising, FFOBI provides a good methodology to reconstruct independent components, par-

ticularly so when the covariance operator has multiple eigenvalues or eigenvalues with close values.

8.2. Real dataset

Let us now turn to a real data example. This dataset consists of daily rainfall measurements in 191

weather stations in Australia, measured (non regularly) between 1840 and 1990 (a more detailed de-

scription can be found in Delaigle and Hall (2010)). The data can be accessed at http://rda.ucar.edu.

After removing an obviously outlying station from the data, averaging over the years and spline

smoothing, our dataset consists of 190 curves X̂i(t) representing the rainfall at time t (time passed

in a given year) at the ith weather station. This dataset, presented in Figure 2 below, is known to

have two types of station: (i) “tropical” ones (usually located north) for which the precipitations are

heavier in summer (early in the year) and (ii) those for which the high precipitations occur in the

cooler months.
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Fig. 2. Precipitations as a function of time in 190 different locations in Australia.

Figure 3 presents a histogram of the first principal score (which accounts for 73.2% of the total

variation), together with the functional principal components. Interestingly, discrimination between

the two behaviors exposed above is well known to be accounted for by the first principal component,

for which large values are associated to the tropical stations. This can be seen in the left panel of

Figure 5, where the locations of the weather stations are shown, coloured according to the result of

a 2-means clustering along FPCA’s first component.
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Fig. 3. Left: Histogram of the first principal scores. Right: k = 4 first principal functions. From thickest to

thinnest, they account respectively for 73.2%, 22%, 3.1% and 1.1%.

Remarkably, the components obtained from conducting the FFOBI procedure allow to uncover

another source of discrimination. Figure 4 presents the histogram of the fourth FFOBI scores (we

chose in this simulation k = 4 as four principal components account for 99.4%). A clear bimodal

structure is exhibited. Figure 4 also shows the eigenfunctions of the FFOBI operator. Interestingly,

we see that the fourth functions emphasises strongly a period towards the end of the year and also,

to a lesser extent, a few months between summer and winter. The right panel of Figure 5 colours the
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Fig. 4. Left: Histogram of the fourth FFOBI scores. Right: k = 4 FOBI functions. From thickest to thinnest, in

decreasing order of kurtosis.

location of the weather stations according to the result of a 2-means clustering along FFOBI’s fourth

component. The East-West discrimination is striking (a few weather stations are wrongly classified,

though, but are given a score that lies between both modes in the distribution) with the eastern

stations famously known to suffer heavy rains during fall and spring, being hit by “Australian east

coast lows”, extratropical cyclones generated by the particular geography of the region (the Great

Divide) together with the El Niño Southern Oscillation phenomenon (see, for example, Hopkins and

Holland (1997)).

Note that this latter discrimination is not picked up by FPCA components, while the North-South

behavior is still taken into account by the first FFOBI score, thereby showing the ability of the FFOBI

transformation to uncover extra structure.

Fig. 5. Locations† of the 190 Australian weather stations together with their classification based on 2-means

clustering on first principal scores (left) and fourth FOBI scores (right).

†Map copyright: Google c©.
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9. Concluding remarks

In this paper, we introduced a functional version of the fourth-order blind identification procedure

which, under natural assumptions, reconstructs the independent components of a functional IC model.

This novel construction is, however, one of few attempts to provide a dimension reduction method-

ology in the functional setup that goes beyond classical PCA.

While its Fisher consistency has been stated in this paper, many properties of functional FOBI

remain to be explored but go certainly beyond the scope of this paper. We already stressed the

importance of the selection of k and the sensitivity to the estimation of the covariance operator’s

eigenvalues. While asymptotic results are known for FPCA (see, for example, Bosq (2000) or Hall

and Hosseini-Nasab (2006)), such results have never been extended to other scatter operators on

Hilbert spaces. We hope to provide such a study in future work.

FOBI has also been proved to work well with mixtures of distributions. In more generality,

Invariant Coordinate Selection (Tyler et al., 2009) has been proved to recover independent components

in IC models as well as the Fisher subspace in certain mixture distributions. The possibility to provide

a functional version of ICS is, however, far more complicated, as, to the best of our knowledge, there

does not exist another fully affine equivariant scatter operator in H . If one restricts purely to the

FIC models, extensions of other methodologies based on moments (such as JADE, Cardoso and

Souloumiac (1993)) using the same operator diagonalisation ideas could be considered.

A. Appendix

This appendix collects proofs of technical results. The following properties of tensor products are

standard (see, for example, Fukumizu and Bach, 2007) but we record them here as a lemma for easy

reference.

Lemma A.1 If f, g, h ∈H , and A,B ∈ B (H ), then

(a) (g ⊗ f)∗ = f ⊗ g;

(b) (Ag)⊗ (Bf) = A(g ⊗ f)B∗;

(c) (h⊗ g)(g ⊗ f) = ‖g‖2H (h⊗ f).

Proof of Theorem 4.2: Let {fi : i ∈ N0} be an orthonormal basis of H . Then, by Lemma A.1,

tr(fobi(X)) =
∑

i∈N0
〈fi, fobi(X)fi〉H =

∑
i∈N0

E(‖X‖2H 〈fi, X〉
2

H )

The right-hand side is the limit

lim
n→∞

∑n

i=1
E(‖X‖2H 〈fi, X〉

2

H ) = lim
n→∞

E(‖X‖2H
∑n

i=1
〈fi, X〉2H ).
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Because

‖X‖2H
∑n

i=1
〈fi, X〉2H ≤ ‖X‖

2

H

∑∞

i=1
〈fi, X〉2H = ‖X‖4H , E‖X‖4H <∞,

by the dominated convergence theorem

lim
n→∞

∑n

i=1
E(‖X‖2H

∑n

i=1
〈fi, X〉2H ) = E(‖X‖2H lim

n→∞

∑n

i=1
〈fi, X〉2H ) = E‖X‖4H <∞.

Hence tr(fobi(X)) <∞. 2

Proof of Theorem 4.4: (a) We note that

var((AX + b)) =E {[(AX + b)− E(AX + b)]⊗ [(AX + b)− E(AX + b)]}

=E[(AX)⊗ (AX)].

By Lemma A.1, the right-hand side is AE(X ⊗X)A∗ = A var(X)A∗.

(b) Similarly,

fobi(UX + b) = E[‖UX‖2H (UX)⊗ (UX)] (9)

Note that ‖UX‖2H = 〈X,U ∗UX〉H = ‖X‖2H and, by Lemma A.1, (UX) ⊗ (UX) = U(X ⊗ X)U ∗.

Hence the right-hand side of (9) is U fobi(X)U ∗. 2

Proof of Proposition 5.2: The assertions about D and R are obvious. Consider now the assertion

for Π ∈P (H |T k). Let Z = ΓX. Because E‖Z‖2H <∞, ΣZ is trace-class and Z can be expressed as∑
i∈N0
〈Z, fi〉H fi. Consequently,

ΠZ =
∑k

i=1

∑k

j=1
(fπ(i) ⊗ fi)〈Z, fj〉H fj +

∑∞

i=k+1
〈Z, fi〉H fi

=
∑k

i=1
〈Z, fi〉H fπ(i) +

∑∞

i=k+1
〈Z, fi〉H fi.

Hence,

〈ΠZ, fi〉H =

〈Z, fπ
−1(i)〉H for i = 1, . . . , k, and

〈Z, fi〉H for i = k + 1, k + 2, . . .
.

Thus the set of random variables {〈ΠZ, fi〉H : i ∈ N0} is independent. The last statement follows

immediately. 2

Proof of Lemma 5.4: Since X ∼ FICMk(Γ), there exists a Γ0 ∈ B (T k) such that

X = (PTkΓ0PTk +QTk)Z.

By Theorem 4.4, part (a),

ΣX = (PTkΓ0PTk +QTk)ΣZ(PTkΓ
∗
0
PTk +QTk) = PTkΓ0PTkΣZPTkΓ

∗
0
PTk +QTkΣZQTk .
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Hence Σ−1/2(k)

X
= PTk(Γ0PTkΣZPTkΓ

∗
0
)−1/2PTk +QTk , which implies

Σ
−1/2(k)

X
X = Σ

−1/2(k)

X
(PT k

Γ0PT k
+QT k

)Σ
1/2(k)

Z
Σ
−1/2(k)

Z
Z ≡ AΣ

−1/2(k)

Z
Z.

It remains to show that A ∈ U (H |Tk). Put Σ0

Z
= PTkΣZPTk . Then,

A = (PTk(Γ0Σ
0

Z
Γ
∗
0
)
−1/2

PTk +QTk)(PT k
Γ0PT k

+QT k
)(PTk(Σ

0

Z
)
1/2
PTk +QTk)

= PTk(Γ0Σ
0

Z
Γ
∗
0
)
−1/2

Γ0(Σ
0

Z
)
1/2
PTk +QT k

.

So, showing A ∈ U (H |Tk) amounts to show U = (Γ0Σ
0

Z
Γ∗

0
)−1/2Γ0(Σ

0

Z
)1/2 ∈ U (Tk). We have

UU
∗

= [(Γ0Σ
0

Z
Γ
∗
0
)
−1/2

Γ0(Σ
0

Z
)
1/2

][(Γ0Σ
0

Z
Γ
∗
0
)
−1/2

Γ0(Σ
0

Z
)
1/2

]
∗

= [(Γ0Σ
0

Z
Γ
∗
0
)
−1/2

Γ0(Σ
0

Z
)
1/2

][(Σ
0

Z
)
1/2

Γ
∗
0
(Γ0Σ

0

Z
Γ
∗
0
)
−1/2

] = ITk ,

where ITk denotes the identity operator in Tk. Similarly,

U
∗
U = [(Γ0Σ

0

Z
Γ
∗
0
)
−1/2

Γ0(Σ
0

Z
)
1/2

]
∗
[(Γ0Σ

0

Z
Γ
∗
0
)
−1/2

Γ0(Σ
0

Z
)
1/2

]

= [(Σ
0

Z
)
1/2

Γ
∗
0
(Γ0Σ

0

Z
Γ
∗
0
)
−1/2

][(Γ0Σ
0

Z
Γ
∗
0
)
−1/2

Γ0(Σ
0

Z
)
1/2

] = ITk .

Hence U ∈ U (Tk). 2

Proof of Lemma 5.5: Since Z can be expanded as
∑

i∈N0
〈Z, fi〉H fi, we have

fobi(Z) =E[〈Z,Z〉H (Z ⊗ Z)]

=
∑

i,j,k,`∈N0
E[〈〈Z, fi〉H fi, 〈Z, fj〉H fj〉H (〈Z, fk〉H fk ⊗ 〈Z, f`〉H f`)]

=
∑

i,j,k,`∈N0
〈fi, fj〉HE[〈Z, fi〉H 〈Z, fj〉H (〈Z, fk〉H fk ⊗ 〈Z, f`〉H f`)]

=
∑

i,k,`∈N0
E[〈Z, fi〉2H 〈Z, fk〉H 〈Z, f`〉H ](fk ⊗ f`).

(10)

Because the sequence of random variables {〈Z, fi〉H : i ∈ N0} is independent, we have, for any k 6= `

and any i ∈ N0, E[〈Z, fi〉2H 〈Z, fk〉H 〈Z, f`〉H ] = 0. Hence, (10) reduces to

fobi(Z) =
∑

i,j∈N0
E[〈Z, fi〉2H 〈Z, fj〉

2

H ] (fi ⊗ fi)

=
∑

i∈N0
E〈Z, fi〉4H (fi ⊗ fi) + E[〈Z, fi〉2H ](fi ⊗ fi)

∑
j 6=iE[〈Z, fj〉2H ].

However, since E(Z) = 0, we have E〈Z, fi〉2H = var(〈Z, fi〉H ). Moreover, kurt(〈Z, fi〉H ) is defined

through the relation E〈Z, fi〉4H = [var(〈Z, fi〉H )]2kurt(〈Z, fi〉H ). Hence the right-hand side above can

be rewritten as∑
i∈N0
{[var(〈Z, fi〉H )]

2
kurt(〈Z, fi〉H ) + [var(〈Z, fi〉H )]

∑
j 6=i [var(〈Z, fj〉H )]}(fi ⊗ fi).

The desired equality now follows from E‖Z‖2H =
∑

j∈N0
var(〈Z, fi〉H ). 2

Proof of Lemma 5.6: Let A =
∑k

i=1
ci(fi ⊗ fi). Then A is a self-adjoint operator in B (T k) with

spectral decomposition
∑k

i=1
ci(fi ⊗ fi). Because c1, . . . , ck are distinct, the assertion follows from
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the uniqueness of the spectral decomposition of a self adjoint operator with finite-dimensional range

(Conway, 1990). 2

Proof of Theorem 5.3: Let Z = ΓX, X̃ = Σ−1/2(k)

X
X, and Z̃ = Σ−1/2(k)

Z
Z. Then, by Lemma 5.4,

X̃ = UZ̃ for some U ∈ U (H |Tk). Since U (H |Tk) ⊆ U (H ), by the unitary equivariance of the

FOBI operator in Theorem 4.4, fobi(X̃) = U fobi(Z̃)U ∗. Since Z has independent components, and

Σ−1/2(k)

Z
∈ D (H |T k), by Proposition 5.2, Z̃ also has independent components. By Lemma 5.5, then

fobi(Z̃) =
∑∞

i=1
νi(Z̃)(fi ⊗ fi). (11)

Because U ∈ U (H |Tk), by Proposition 5.1, it can be written as
∑k

i=1
gi ⊗ fi +QTk for some ONB

{g1, . . . , gk} of Tk. Thus

fobi(X̃) = (
∑k

i=1
gi ⊗ fi +QTk)[

∑k

i=1
νi(Z̃)(fi ⊗ fi) +

∑∞

i=k+1
νi(Z̃)(fi ⊗ fi)]

(
∑k

i=1
gi ⊗ fi +QTk)

∗
.

The right-hand side is of the form (A1+B1)(A2+B2)(A3+B3), where A1, A2, A3 are members of B (T k)

and B1, B2, B3 are members of B (T ⊥
k
). Hence the product can be written as A1A2A3+B1B2B3. These

two terms are computed as follows

A1A2A3 = (
∑k

i=1
gi ⊗ fi)[

∑k

i=1
νi(Z̃)(fi ⊗ fi)](

∑k

i=1
fi ⊗ gi) =

∑k

i=1
νi(Z̃)(gi ⊗ gi).

B1B2B3 =
∑∞

i=k+1
νi(Z̃)(fi ⊗ fi).

Since A1A2A3 ∈ B (T k) and B1B2B3 ∈ B (T ⊥
k
), we have

PT k
fobi(X̃)PT k

=
∑k

i=1
νi(Z̃)(gi ⊗ gi).

By construction, var(〈Z̃, fi〉H ) = 1, and hence, for any i = 1, . . . , k,

νi(Z̃) = kurt(〈Z, fi〉H ) + E‖Z̃‖2H − 1,

which are distinct as kurt(〈Z, f1〉H ), . . . , kurt(〈Z, fk〉H ) are distinct. Because

∑k

i=1
νi(Z̃)(gi ⊗ gi) =

∑k

i=1
τi(hi ⊗ hi) = PT k

fobi(X̃)PT k
,

where ν1(Z̃), . . . , νk(Z̃) are distinct, by Lemma 5.6,

∑k

i=1
(gi ⊗ fi) =

∑k

i=1
(hi ⊗ fi)R0Π0

for some R0 ∈ R (T k) and Π0 ∈P (T k). Let R = PT k
R0PT k

+QT k
and Π = PT k

Π0PT k
+QT k

. Then

R ∈ R (H |T k), Π ∈P (H |T k), and U = V RΠ. Hence

V
∗
X̃ = Π

∗
R
∗
U
∗
UZ̃ = Π

∗
R
∗
Z̃ = Π−1RZ̃.
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Because Z̃ has independent components, R ∈ R (H |T k), Π−1 ∈P (H |T k), by Proposition 5.2, V ∗X̃

has independent components. 2

Proof of Theorem 6.1: Since A is a injective operator in B (H |T k), there is an invertible operator

A0 ∈ B (T k) such that A = PT k
A0PT k

+QT k
, A−1

0
∈ B (T k). Let Y = AX. Then

Σ
−1/2(k)

Y
Y = Σ

−1/2(k)

Y
AX = Σ

−1/2(k)

Y
AΣ

1/2(k)

X
Σ
−1/2(k)

X
X.

Let λi denote the eigenvalue of ΣX associated with the eigenfunction fi, and let

ΣX,0 =
∑k

i=1
λi(fi ⊗ fi), ΣX,1 =

∑∞

i=k+1
λi(fi ⊗ fi).

Then ΣX = ΣX,0 + ΣX,1, and

ΣY = AΣXA
∗

= (PT k
A0PT k

+QT k
)(ΣX,0 + ΣX,1)(PT k

A
∗
0
PT k

+QT k
)

=PT k
A0ΣX,0A

∗
0
PT k

+ ΣX,1.

Hence

Σ
−1/2(k)

Y
= PT k

(A0ΣX,0A
∗
0
)
−1/2

PT k
+QT k

.

Substituting this and Y = (PT k
A0PT k

+QT k
)X into Σ−1/2(k)

Y
Y , we obtain

Σ
−1/2(k)

Y
Y = [PT k

(A0ΣX,0A
∗
0
)
−1/2

PT k
+QT k

](PT k
A0PT k

+QT k
)Σ

1/2(k)

X
Σ
−1/2(k)

X
X

= [PT k
(A0ΣX,0A

∗
0
)
−1/2

A0Σ
1/2

X,0
PT k

+QT k
]Σ
−1/2(k)

X
X.

Following the proof of Lemma 5.4, it is easy to see that

PT k
(A0ΣX,0A

∗
0
)
−1/2

A0Σ
1/2

X,0
PT k

+QT k
∈ U (H |T k).

Denote this unitary operator UYX. By Lemma 5.4, there exist unitary operators UXZ, UY Z such that

Σ
−1/2(k)

X
X = UXZΣ

−1/2(k)

Z
Z, Σ

−1/2(k)

Y
Y = UY ZΣ

−1/2(k)

Z
Z.

Hence, by Lemma 5.5, with UZX = U ∗
XY

and UXY = U ∗
YX

,

fobi(Σ
−1/2(k)

Y
Y ) = fobi(UYXUXZΣ

−1/2(k)

Z
Z) = UYXUXZfobi(Σ

−1/2(k)

Z
Z)UZXUXY ,

fobi(Σ
−1/2(k)

X
X) =UXZfobi(Σ

−1/2(k)

Z
Z)UZX.

Now, consider the spectral decompositions of fobi(Σ−1/2(k)

X
X) and fobi(Σ−1/2(k)

Y
Y ) projected on T k:

PT k
fobi(Σ

−1/2(k)

X
X)PT k

= VX,0D0V
∗
X,0
, PT k

fobi(Σ
−1/2(k)

Y
Y )PT k

= VY,0D0V
∗
Y,0
,

where VX,0, VY,0 ∈ U (T k) and D0 ∈ D (T k). Because kurt(〈ΓX, fi〉H ), i = 1, . . . , k, are distinct, we

have, by Lemma 5.6, VY,0 = UYX,0UXZ,0R0Π0, and VX,0 = UXZ,0R0Π0, where UYX,0, UXZ,0, R0 and Π0 are
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the T k-components of UYX, UXZ, R and Π defined according to the rule C = PT k
C0PT k

+QT k
for any

C ∈ B (H |T k). This last expression can be re-written as relations between operators in B (H |T k)

as follows:

VY = UYXUXZRΠ, VX = UXZRΠ,

where VY and VX are defined according to the same rule. Then

VY = UYXVX(RΠ)−1(RΠ) = UYXVX.

Consequently,

V
∗
Y

Σ
−1/2(k)

Y
Y =V

∗
X
UXYΣ

−1/2(k)

Y
AΣ

1/2(k)

X
Σ
−1/2(k)

X
X. (12)

However, note that

UXYΣ
−1/2(k)

Y
AΣ

1/2(k)

X
= [PT k

Σ
1/2

X,0
A
∗
0
(A0ΣX,0A

∗
0
)
−1/2

PT k
+QT k

]

[PT k
(A0ΣX,0A

∗
0
)
−1/2

PT k
+QT k

](PT k
A0Σ

1/2

X,0
PT k

+QT k
)

=PT k
Σ

1/2

X,0
A
∗
0
(A0ΣX,0A

∗
0
)
−1
A0Σ

1/2

X,0
PT k

+QT k
= I.

(13)

Substituting (13) into (12), we obtain the desired identity. 2

Proof of Lemma 7.1: (a). It is easy to show that the inner product in Hm is 〈f, g〉H = [f ]T[g], and

that the coordinate of tensor product in Hm is [f ⊗ g] = [f ][g]T. By the definition of ΣX̂ and linearity

of the coordinate mapping,

[ΣX̂] = [En(X̂ ⊗ X̂)]− [(EnX̂)⊗ (EnX̂)]. (14)

Hence

[En(X̂ ⊗ X̂)] =En[X̂ ⊗ X̂] = En([X̂][X̂]T)

[(EnX̂)⊗ (EnX̂)] = [EnX̂][EnX̂]T = (En[X̂])(En[X̂])T.

Substitute these into the right hand side of (14) to prove the first equality in 1. By the definition of

partial power (7), as applied to ΣX̂, we have

ΣX̂ =
∑k

i=1
λ
α

i
(fi ⊗ fi) +

∑r

i=k+1
(fi ⊗ fi).

Taking coordinates on both sides proves the second equality in 1.

(b). If ΣX̂f = λf , then [ΣX̂][f ] = λ[f ], which, by (a). above implies varn([X̂])[f ] = λ[f ]. The

same argument proves the second assertion.

(c). The ith demixed variable is

〈X̃, gi〉H =
∑k

`=1
λ
−1/2
` 〈X̂ − EnX̂, f`〉H 〈f`, gi〉H

=
∑k

`=1
λ
−1/2
` ([X̂]− En[X̂])T[f`][f`]

T[gi],
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which is the desired equality because, by 1., [f`] and [gi] are the eigenvectors of varn([X̂]) and

fobin([X̃]), respectively. 2
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