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Summary

Mahalanobis distance may be used as a measure of the disparity between an individual’s profile of scores and the

average profile of a population of controls. The degree to which the individual’s profile is unusual can then be

equated to the proportion of the population who would have a larger Mahalanobis distance than the individual.

This paper addresses the task of forming an estimate of this proportion when the mean and variance-covariance

matrix of the population profiles are estimated from a sample. The estimators that are examined include plug-in

maximum likelihood estimators, medians, the posterior mean from a Bayesian probability matching prior, an

estimator derived from a Taylor expansion, and two forms of polynomial approximation, one based on Bernstein

polynomial and one on a quadrature method. Simulations show that some estimators, including the commonly-

used plug-in maximum likelihood estimators, can have substantial bias for small or moderate sample sizes. The

polynomial approximations yield estimators that have low bias, with the quadrature method marginally to be

preferred over Bernstein polynomials. However, the polynomial estimators sometimes yield infeasible estimates

that are outside the 0 - 1 range. While none of the estimators are perfectly unbiased, the median estimators

match their definition; in simulations their estimates of the proportion have a median error close to zero. The

standard median estimator can give unrealistically small estimates (including 0) and an adjustment is proposed

that ensures estimates are always credible. This latter estimator has much to recommend it when unbiasedness

is not of paramount importance, while the quadrature method is recommended when bias is the dominant issue.
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1 Introduction

The Mahalanobis distance is frequently used in multivariate analysis as a statistical measure

of distance between a vector of scores for a single case and the mean vector of the underlying

population or a sample of data. It was developed by Mahalanobis (1936) as a distance measure

that incorporates the correlation between different scores. See also DasGupta (1993). The

Mahalanobis distance of a vector x∗, of say ν1 variables (scores), from a population mean µµµ is

defined as

∆ =

√
(x∗ − µµµ)′ΣΣΣ−1(x∗ − µµµ), (1)

where ΣΣΣ is the population covariance matrix. The square of the Mahalanobis distance, ∆2, is

sometimes referred to as the Mahalanobis index. If the population follows a multivariate normal

distribution (MVN) and x∗ is an observation from this same distribution, then the Mahalanobis

index follows a central chi-square distribution on ν1 degrees of freedom. In this paper, interest

focuses on estimating P , the proportion of the population that give a more unusual Mahalanobis

index than ∆2, under the assumption that the population distribution is a MVN distribution.

That is

P = Pr{(x− µµµ)′ΣΣΣ−1(x− µµµ) > (x∗ − µµµ)′ΣΣΣ−1(x∗ − µµµ)}, (2)

where x ∼ MVN(µµµ,ΣΣΣ). For example, if x∗ is a patient’s profile from a set of medical tests, then

P would be the proportion of the population with a profile that is more unusual than that of the

patient.

The corresponding Mahalanobis distance in a sample, of say n observations, is defined as

D̃ =

√
(x∗ − x̄)′S−1(x∗ − x̄), (3)

where x̄ and S are the sample mean vector and sample covariance matrix, respectively. Under

the assumption that x∗ and the sample data are from the same MVN distribution, the sample
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Mahalanobis index (D̃2) is proportional to a central F distribution with ν1 and ν2 ≡ n − ν1

degrees of freedom. See, for example, Mardia et al. (1979).

We were initially motivated by the need to estimate the abnormality of a single patient’s

profile in neuropsychology. The problem arises, for example, when psychologists need to assess

how a patient with some brain disorder or a head injury is different from the general population

or some particular subpopulation. This assessment is usually based on the patient’s scores in

a set of tests that measure different traits or abilities. The abnormality of the case’s profile of

scores can then be expressed in terms of the Mahalanobis index between this profile and the

mean of the normative population or normative sample.

A Hotelling’s T 2 significance test for testing whether the case could belong to the norma-

tive population is proposed in Huizenga et al. (2007). Their test is based on the central F

distribution to which the Hotelling’s test statistic is proportional. Crawford et al. (2014) give a

confidence interval for the probability (P ) of getting a more extreme profile than the case. The

confidence interval is based on a non-central F distribution with a non-centrality parameter that

is proportional to the case’s Mahalanobis index. The confidence intervals are correct, in that

their coverage levels equal the nominal confidence level exactly. In contrast, the p-value from

the Hotelling’s T 2 test provides an obvious point estimator of P , but it is biased. Indeed, the

problem of finding an unbiased estimator of P has not been resolved.

Here we consider a number of obvious estimators of P and propose some new, less obvious

estimators. The bias and mean square error of all the estimators are compared in extensive

simulations. No estimator is uniformly better than all alternatives, but a small selection of the

estimators are clearly to be preferred. As well as bias and mean square error, other criteria and

desirable qualities in an estimator are also considered.

The need to estimate the value of P for Mahalanobis distances does not only arise in psy-
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chology. In the literature, the commonly used estimates of P are the p-value computed from the

chi-square distribution of the squared value of the sample Mahalanobis distance, or the p-value

from the central F distribution associated with Hotelling’s T 2 test. For example, in remote sens-

ing image analysis, Foody (2006) was interested in measuring the closeness of an image pixel to

a single class centroid. For that, he used the Mahalanobis distance and converted the calculated

Mahalanobis distance, of a particular image pixel from a specified class centroid, to its associated

p-value from the chi-square distribution. He then interpreted the p-value as the probability of

obtaining a Mahalanobis distance as extreme as that observed for a particular pixel with respect

to a specified class, thus effectively equating the p-value to P .

In environmental and health science, Liu and Weng (2012) used Mahalanobis distance in

public health studies to enhance the resolution of satellite imagery. They conducted a spatial-

temporal analysis of West Nile Virus outbreak in Los Angeles in 2007 using sensing variables and

infective mosquito surveillance records. Mahalanobis distance was used to identify and map the

risk areas where habitat was suitable for infective mosquitoes. Liu and Weng (2012) calculated

the distance between a vector of environmental variables and the mean vector of environmental

factors at the closest locations of mosquito infections. Locations with smaller values of Maha-

lanobis distances indicated a more favorable habitat for the mosquitoes and hence an area of

higher risk. They assumed that Mahalanobis distance follows a chi-square distribution, from

which P was calculated for each map pixel. Pixels with P between 0.6 and 0.9 (0.9 and 1.0) were

considered moderate risk (high risk) areas and then a risk map was produced.

In analytical chemistry, Shah and Gemperline (1990) were interested in analyzing the near-

infrared reflectance spectra of raw materials. They used Mahalanobis distance as a classification

technique for pattern recognition to classify new samples by comparing them to measurements

of predetermined classes. Each sample was classified according to the p-value associated with its
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Mahalanobis distance from the class centroids. Shah and Gemperline (1990) needed to estimate

the p-value for each new sample and used the chi-square distribution to estimate these probabil-

ities. They considered samples with probability levels between (0-0.01), (0.01-0.05) or (0.05-1.0)

to be nonmembers, outliers or members, respectively.

In ecology, Clark et al. (1993) developed a multivariate method to model the habitat-use

of female black bears. Their model was based on the Mahalanobis distance in a Geographic

Information System. They computed the Mahalanobis distance between the habitat character-

istics associated with each map cell and the estimated ideal mean habitat. The probability of a

larger Mahalanobis distances than that observed was calculated for each cell and a map of these

probabilities was then produced. (An approximate chi-square distribution on ν1 − 1 degrees of

freedom was used to compute the probabilities, where ν1 is the number of habitat characteristics.)

Following Clark et al. (1993), Farber and Kadmon (2003) used the same approximate chi-square

distribution to associate each Mahalanobis distance with a p-value in bioclimatic ecological mod-

elling.

A sample Mahalanobis distance has an exact F distribution. Hence, unsurprisingly, the F

distribution has also been frequently used to quantify the rarity/commoness of a Mahalanobis

distance. For example, Lu et al. (2005) used the two groups Hotelling’s T 2 test for detecting

differential expressions in genetic microarrays. They conducted a microarray experiment in which

samples from a disease group and from a normal group were obtained. They based their test for

gene differential expression on the scaled F distribution of the Hotelling’s T 2 statistic. Some other

important applications of the Hotelling’s T 2 statistic, Mahalanobis distance and the associated

p-values include, for example, multivariate outlier detection [e.g. Garrett (1989); Hardin and

Rocke (2005)] and multivariate quality control charts [e.g. Sullivan and Woodall (1998); Johnson

and Wichern (2007)].
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We conducted a simulation study to test the performance of the sample p-value associated

with the F distribution, denoted by P̂F , and that associated with the chi-square distribution,

denoted by P̂χ2 , in estimating the probability P . Simulation results show that both are biased

estimates of P . This can be seen in the first two rows of Table 1, which gives results for ν1 = 8,

ν2 = 40 and P = 1%, 2.5%, 5% and 40%. For example, the F distribution gives an estimate of

3.8% when it should be 1% and the chi-square distribution gives an estimate of 25.8% when it

should be 40%. We propose some alternative estimators of P and compare them in terms of their

bias and root mean square error in the simulation study. Table 1 gives results for ν1 = 8 and

ν2 = 40, for all the estimators we consider. (Proportions are expressed as percentages.) Some

have much lower biases than the estimators derived from the F and chi-square distribution.

Three of the alternative point estimators of P are based on its confidence intervals. The first

uses the frequentist median of the non-centrality parameter, and is denoted by P̂D. The second

proposed estimator uses the Bayesian median of the non-centrality parameter or its frequentist

median whichever is greater. We call it the modified median estimator and denote it by P̂MD; P̂D

and P̂MD only differ when P approaches 100%. The third estimator in this group is a Bayesian

estimator; it is based on the idea of probability matching priors and is denoted by P̂BY . We

propose another two new estimators of P based on the mean of the non-centrality parameter

of a non-central F distribution; these are denoted by P̂M and P̂R. Estimators derived from a

Taylor expansion (P̂T ), Bernstein polynomials of degree 4, 7 and 10 (P̂B4, P̂B7 and P̂B10) and

a quadrature polynomial approximation of degree 4, 7 and 10 (P̂Q4, P̂Q7 and P̂Q10) are also

proposed and shown to be approximately unbiased in the broad range of situations examined in

the simulation study.
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Table 1: Bias and root mean square error of the proposed estimates of P at ν1 = 8 and ν2 = 40.
P =1% P =2.5% P =5% P =40%

P̂ bias
√
M P̂ bias

√
M P̂ bias

√
M P̂ bias

√
M

P̂F 3.8 2.8 4.8 6.4 3.9 6.9 9.8 4.8 9.0 41.2 1.2 15.9
P̂χ2 0.6 -0.4 1.3 1.5 -1.0 2.6 2.9 -2.1 4.4 25.8 -14.2 20.7

P̂D 2.2 1.2 3.4 4.3 1.8 5.3 7.3 2.3 7.6 40.2 0.2 17.4
P̂MD 2.2 1.2 3.3 4.3 1.8 5.4 7.3 2.3 7.6 39.3 -0.7 16.3
P̂BY 3.7 2.7 4.7 6.5 4.0 7.1 9.5 4.5 8.8 41.0 1.0 16.1
P̂M 2.7 1.7 4.0 5.1 2.6 6.2 8.4 3.4 8.7 42.8 2.8 17.8
P̂R 3.3 2.3 4.7 6.1 3.6 7.2 9.8 4.8 9.9 45.1 5.1 18.1
P̂T 1.3 0.3 2.6 3.0 0.5 4.6 5.7 0.7 7.0 40.6 0.6 19.1
P̂B4 2.0 1.0 3.2 4.0 1.5 5.2 7.0 2.0 7.5 40.6 0.6 18.0
P̂Q4 1.1 0.1 2.4 2.6 0.1 4.4 5.2 0.2 6.8 39.9 -0.1 19.2

P̂B7 1.7 0.7 2.9 3.6 1.1 4.8 6.4 1.4 7.2 40.4 0.4 18.5
P̂Q7 1.0 0.0 2.3 2.5 0.0 4.3 5.0 0.0 6.8 40.1 0.1 19.5

P̂B10 1.5 0.5 2.7 3.3 0.8 4.7 6.0 1.0 7.1 40.3 0.3 18.7
P̂Q10 1.0 0.0 2.3 2.5 0.0 4.3 5.0 0.0 6.8 40.0 0.0 19.5

The paper is organized as follows. In Section 2, we briefly discuss the two frequently used

point estimators of P . The new twelve proposed point estimators of P are detailed in Section 3.

All the fourteen point estimators are then compared in Section 4, where we present and discuss

the results of the simulation study. In Section 5, we examine the behavior of each estimator at

different observed values of the Mahalanobis index. We also briefly consider the median error of

the estimators (rather than average error) and mean absolute error. Concluding comments are

given in Section 6.

2 Two plug-in maximum likelihood estimators of P

We aim to derive an unbiased estimate of

P = Pr{χ2
ν1 > λ}, (4)

where χ2
ν1

is the population Mahalanobis index (x − µµµ)′ΣΣΣ−1(x − µµµ), which follows a chi-square

distribution on ν1 degrees of freedom, and λ = ∆2 is the Mahalanobis index of the case. That is

λ equals (x∗ − µµµ)′ΣΣΣ−1(x∗ − µµµ), where x∗ is the vector of a case’s profile of scores from ν1 tests.
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The probability P is the proportion of the population that has a profile more extreme than the

case.

Let x̄ and Σ̂ΣΣ denote the maximum likelihood estimates of µµµ and ΣΣΣ, respectively, hence ΣΣΣ =

[(n − 1)/n]S. Simple estimates of P can be obtained by replacing the unknown parameters in

equation (2) with their maximum likelihood estimates. This gives our first estimator,

P̂F = Pr{(x− x̄)′Σ̂ΣΣ
−1
(x− x̄) > (x∗ − x̄)′Σ̂ΣΣ

−1
(x∗ − x̄)}, (5)

It is well-known that

P̂F = Pr

{
Fν1,ν2 >

[
ν2

(n− 1) ν1

]
T 2

}
, (6)

where

T 2 =
n

n + 1
λ0, (7)

λ0 = (x∗ − x̄)′S−1(x∗ − x̄),

and Fν1,ν2 is a central F distribution on ν1 and ν2 degrees of freedom. [λ0 = D̃2.] As T 2 in (7)

is Hotelling’s T 2 statistic, P̂F is the p-value from testing the null hypothesis that the case is a

member of the control population. Consequently, P̂F is commonly used as a point estimate of

the proportion of the normative population with more extreme profiles than the case.

Another frequently used plug-in maximum likelihood estimate, denoted by P̂χ2 , is the p-value

from the chi-square distribution. Instead of replacing µµµ and ΣΣΣ−1 by x̄ and Σ̂ΣΣ
−1

everywhere in

(2), P̂χ2 is obtained by only making this replacement in the right-hand side of the inequality.

Thus

P̂χ2 = Pr
{
(x− µµµ)′ΣΣΣ−1(x− µµµ) > (x∗ − x̄)′Σ̂ΣΣ

−1
(x∗ − x̄)

}
, (8)

and we have that

P̂χ2 = Pr{χ2
ν1 >

n

n− 1
λ0}. (9)
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Simulation results show that P̂χ2 is generally better than P̂F as an estimate of P . However, both

are biased and, as shown in Table 1, P̂χ2 underestimates P in most cases, with absolute bias that

is getting higher for larger values of the true parameter P .

3 New point estimators of P

3.1 Estimators derived from confidence intervals

3.1.1 Classical estimator of the median

Based on the work of Reiser (2001), Crawford et al. (2014) proposed a method for constructing

confidence intervals on P . The observable sample statistic F0 = [n ν2/(n − 1) ν1]λ0 has a non-

central F distribution with ν1, ν2 degrees of freedom, respectively, and a non-centrality parameter

nλ, i.e.

F0 =

[
n ν2

(n− 1) ν1

]
λ0 ∼ Fν1,ν2(nλ). (10)

To construct a confidence interval for P , define Lα as the value of nλ for which F0 is the α-quantile

of Fν1,ν2(nλ). Then, a 100(1− α)% confidence interval for P is given by

{1−G(Lα/2/n), 1−G(L1−α/2/n)}, (11)

where G(.) is the cdf of a chi-square distribution on ν1 degrees of freedom.

Using the same technique, a point estimator of P is given by its median estimate. We have

that L0.5 is the value of nλ at which F0 is the median of the Fν1,ν2(nλ) distribution. The first of

our new estimators, P̂D, is defined as

P̂D = 1−G

(
L0.5

n

)
. (12)

Although P̂D is a biased estimator of P , simulation results show that it usually has a smaller
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bias and mean square error than P̂F at all values of the true parameter P . Table 1 shows an

example of this behavior.

3.1.2 Modified estimator of the median

As nλ decreases, so does the median of Fν1,ν2(nλ). Since λ ≥ 0, a lower bound on the median of

Fν1,ν2(nλ) is the median of Fν1,ν2(0). [Fν1,ν2(0) is the ordinary central F distribution on ν1 and ν2

degrees of freedom.] If F0 is less than this lower bound, one approach is to set nλ to zero. This

is the standard approach adopted in the construction of confidence intervals, where the same

problem arises, as discussed in Reiser (2001). The problem arises whenever F0 is small, even if

it is above the lower bound. To illustrate, suppose ν1 = 4, ν2 = 20 and λ0 = 0.4, so F0 = 2.09.

Then calculation gives P̂D = 99.49%. Thus when a patient’s estimated Mahalanobis index is

0.4, then 0.51% is the estimate of the proportion of the normal population with a smaller true

Mahalanobis index than the case. However, if 0.4 were the true Mahalanobis distance of the

case, then the actual proportion of the normal population with a smaller Mahalanobis distance

than the case is calculated at 1.75% (P=0.9825), from a chi-square distribution on 4 degrees of

freedom. The disparity between 0.51% and 1.75% is substantial and, moreover, intuitively one

would expect uncertainty to result in P̂D being less extreme than P , rather than being greater

than it. As λ0 decreases the situation worsens. When λ0 = 0.2, P̂D = 99.99%, while P = 99.53%

when λ = 0.2.

A pragmatic solution was proposed by Garthwaite et al. (2014). They supposed an individ-

ual’s sample Mahalanobis index was λ0 and considered the question: “What proportion of the

population will have a true Mahalanobis index that is bigger than this individual?” under two

situations

(i) the individual is the case
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(ii) the individual is a randomly chosen member of the population.

They argue that the answer in situation (i) should be no bigger than in situation (ii). They

suggest that the proportion should be estimated for each situation and the smaller estimate

selected. Adopting that approach, we construct another estimator, P̂MD, as follows.

Let λ̃ be the Mahalanobis index of a randomly selected individual from the population and

let P̃ be the proportion of the population with a larger Mahalanobis index than λ̃. Then P̂

is a random variable and, before observing λ0, P̃ has a uniform distribution over the interval

(0, 1). In consequence, λ̃ has a chi-square distribution on ν1 degrees of freedom. This chi-

square distribution can be taken as the prior distribution in a Bayesian analysis in which there

is a single datum, λ0. Note that there is nothing arbitrary about this prior distribution; it is

the distribution of λ̃ because P̃ ∼ U(0, 1). The likelihood follows from equation (10) F0 =

[n ν2/(n− 1) ν1]λ0|λ̃ ∼ Fν1,ν2(nλ̃). We obtain the posterior distribution of λ, and compute its

normalizing constant through numerical integration. A simple search procedure is used to find

the posterior median of λ̃, say Mλ. We then use Mλ to enhance the median estimator P̂D in (12)

and propose the modified median estimator, P̂MD, as

P̂MD = min{P̂D, 1−G(Mλ)}. (13)

Obviously, P̂MD and P̂D only differ when λ0 is small and then the differences are slight in

absolute terms (|P̂MD - P̂D|), though P̂D/P̂MD is far from 1 for very small λ0. This is illustrated,

for ν1 = 4 and ν2 = 20, in Figures 1 and 2, where P̂D and 1 − G(Mλ) are plotted against λ0 at

different observed values of 0 ≤ λ0 ≤ 32 and 0 ≤ λ0 ≤ 0.5, respectively. As P̂MD takes the lower

value of P̂D and 1 − G(Mλ), Figure 1 shows that P̂D and P̂MD are identical for λ0 > 4.5, while

Figure 2 shows that, as λ0 gets small, P̂MD is clearly less than 100% (as common sense dictates

it should be) while P̂D approaches 100%.
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Figure 1: P̂D and 1−G(Mλ) at 0 ≤ λ0 ≤ 32. Figure 2: P̂D and 1−G(Mλ) at 0 ≤ λ0 ≤ 0.5.

As expected, the bias and mean square error of the modified estimator P̂MD are nearly

identical to those of the median estimator P̂D. This can be seen, for example, in Table 1,

where differences in bias and root MSE between the two estimators are only apparent at P =

40%. Similar results are also obtained in other different situations examined in Section 4. We

recommend P̂MD over P̂D for use in practice to avoid the problem of getting P̂D = 1, as discussed

above.

3.1.3 Bayesian probability matching

Bayesian 100(1−α)% credible intervals quite often have the same endpoints as frequentist 100(1−

α)% confidence intervals if the Bayesian intervals are based on uninformative prior distributions.

Indeed, there has been substantial interest in probability matching priors (Datta and Mukerjee,

2004), which are designed to give credible intervals that match confidence intervals. To construct

our next estimate of P , we suppose a prior distribution has been found that gives posterior

credible intervals which match the confidence intervals specified in equation (11). Treating the

confidence intervals as exact credible intervals, they determine a posterior distribution for the

proportion P . We use a sufficiently large number, say R, of one-sided credible interval limits to
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construct the posterior distribution. The posterior mean is then used as a point estimate, say

P̂BY , of P .

Specifically, we estimate the interval limit Lr/R as the value of nλ for which F0 is the (r/R)-

quantile of Fν1,ν2(nλ), for r = 1, . . . , R. As in (11), the (r/R)-quantile of the posterior distribution

of P is given by 1−G(Lr/R/n). The posterior mean P̂BY is then computed as

P̂BY = 1−
∑R

r=1G(Lr/R/n)

R
. (14)

In practice, we take R = 500.

Based on simulation results, as summarized in Table 1, the estimate P̂BY turned out to be

a badly biased estimate of P . This interesting result illustrates clearly that, while posterior

distributions obtained through exact probability matching priors always match the frequentist

quantiles, they may fail to attain unbiasedness. That is, while a probability matching prior will

(by design) give interval estimates with good frequentist properties, it does not yield a posterior

mean that meets the frequentist definition of unbiasedness.

3.2 Estimators based on the mean of λ

Our next proposed estimators of P are based on the estimated mean value of λ, say λ̄. If F0 is

given by equation (10), then

nλ̄ =
ν1(ν2 − 2)

ν2
F0 − ν1 (15)

is the uniformly minimum variance unbiased estimator of the non-centrality parameter of the

non-central F distribution Fν1,ν2(nλ). However, it is well-known that this is not always positive

and is therefore inadmissible. See, for example, Johnson et al. (1995). To avoid a negative

estimate of λ, put

λ̂ = Max

{
1

n

[
ν1(ν2 − 2)

ν2
F0 − ν1

]
, 0

}
. (16)
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Using λ̂, we propose the estimator P̂M of P as

P̂M = 1−G(λ̂). (17)

Unfortunately, based on the simulation results as shown in Table 1, P̂M can have marked bias

as an estimator of P .

The estimator λ̂ in (16) is also inadmissible (Chow, 1987), but Rukhin (1993) showed that,

for ν2 > 4,

λ̃ =
1

n

[
ν1(ν2 − 4)

ν2
F0

]
. (18)

is an admissible estimator of λ. We base our next estimate, P̂R, of P on λ̃ and put

P̂R = 1−G(λ̃). (19)

However, as illustrated in Table 1, P̂M is generally better than P̂R in terms of bias and mean

square error.

3.3 An estimator based on a Taylor expansion

We expand the cdf of the chi-square distribution G(X) about λ as

G(X) ≃ G(λ) + (X − λ)g(λ) +
(X − λ)2

2
g′(λ), (20)

where g(.) is the pdf of a chi-square distribution with ν1 degrees of freedom. We set X equal to

λ̄ in equation (15) and take the expected value of both sides of (20). This gives

E{G(λ̄)} ≃ G(λ) +
Var(λ̄)

2
g′(λ), (21)

where, from the variance of F0 with ν2 > 4, Var(λ̄) is given by

Var(λ̄) ≃ v0 + v1 λ+ v2 λ
2, (22)
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with v0 = 2ν1(ν1 + ν2 − 2)/(n2(ν2 − 4)), v1 = 4(ν1 + ν2 − 2)/(n(ν2 − 4)) and v2 = 2/(ν2 − 4). [As

defined earlier, F0 ∼ Fν1,ν2(nλ).]

In the light of (21), to obtain an approximately unbiased estimate of G(λ) to the second

order, it seems natural to base our estimate on λ# say, such that

G(λ#)−G(λ̄) = −Var(λ̄)

2
g′(λ). (23)

We start with the case where λ̄ is greater than the mode of the chi-square distribution. In this

case g′(λ) is negative, λ# > λ̄ and we can write

G(λ#)−G(λ̄) = (λ# − λ̄)g(ξ), (24)

for some ξ ∈ (λ̄, λ#). From (23) and (24) we have

λ# − λ̄ = −Var(λ̄)

2

g′(λ)

g(ξ)
. (25)

Moreover, replacing ξ in (24) with λ, we obtain another estimate λ∗ defined by

λ∗ − λ̄ = −Var(λ̄)

2

g′(λ)

g(λ)
. (26)

Suppose |λ̄ − λ| is large relative to |λ̄ − λ#|. If λ > λ#, then λ∗ > λ# and λ∗ will be better

than λ# as an estimate of λ. If λ < λ̄, then λ∗ < λ# and λ∗ will again be better than λ# as

an estimate of λ. On the other hand, supposing that |λ̄ − λ| is small relative to |λ̄ − λ#|, then

g(ξ) ≃ g(λ) and λ∗ ≃ λ#. The consequence is that λ∗ defined in (26) is expected to be better

than λ#, in terms of the mean square error, as an estimate of λ. The other case in which λ̄ is

less than or equal to the mode of the chi-square distribution can be treated similarly.

It remains now to estimate the right hand side of (26). We find an unbiased estimate, say

V̂ar(λ̄), of Var(λ̄) expressed as

V̂ar(λ̄) = u0 + u1 λ̄+ u2 λ̄
2, (27)
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where u0, u1 and u2 are chosen such that E{V̂ar(λ̄)} = Var(λ̄). Specifically, equating the

corresponding coefficients of λ in E{V̂ar(λ̄)} to those in (22), we get u0 = 2ν1(ν1+ν2−2)/(n2(ν2−

2)), u1 = 4(ν1 + ν2 − 2)/(n(ν2 − 2)) and u2 = 2/(ν2 − 2). It is straightforward to show that

g′(λ)

g(λ)
=

1

λ

(ν1
2

− 1
)
− 1

2
. (28)

However, no simple unbiased estimate can be found for 1/λ, instead, we estimate it as 1/λ̄. The

estimator λ∗ is finally expressed as

λ∗ = λ̄− V̂ar(λ̄)

2

[
1

λ̄

(ν1
2

− 1
)
− 1

2

]
. (29)

Using this Taylor based estimate, our proposed approximately unbiased estimate P̂T of P is given

by

P̂T = 1−G(λ∗). (30)

Simulation results summarized in Table 1 show that P̂T is usually one of the better estimates of

P . More information is given in Section 4.

3.4 Estimators based on polynomial approximations

Each of the point estimators of P that we have proposed so far can only give good simulation

results, in terms of its bias and mean square error, at some specific combinations of the values of

ν1, ν2 and the true parameter P . This will be discussed in more detail in Section 4. Unfortunately,

none of them attain approximate unbiasedness uniformly for all values of P . We were therefore

motivated to propose another set of point estimators that are approximately unbiased uniformly

for all P . We utilized polynomial approximations for this purpose as discussed below. Using

these polynomial approximations, we aim to base the proposed estimator of P in this section

on a good global estimate of the non-centrality parameter λ. This means that in searching for
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an approximately unbiased estimate of P , we cover wide areas of the chi-square cdf and do not

locally search around some estimate of λ, as was proposed in Section 3.3 when using the Taylor

expansion. In principle, estimates based on global approximation of the cdf should prove better,

in terms of bias, than an estimate based on a local approximation.

We introduce a set of unbiased estimates of P , denoted for now by P̂P , which are based

on approximating the probability P in (4) as a polynomial function of degree r in λ. From

Weierstrass’s Theorem, any function of a variable, λ say, can be approximated by a polynomial

of λ, provided the function satisfies weak regularity conditions. Now P = Pr(χ2
ν1 > λ) is a

function of λ that meets these regularity conditions, so we may put

P = Pr(χ2
ν1

> λ) ≃
r∑

i=0

ai λ
i. (31)

The coefficients ai (i = 0, . . . , r) are known functions in ν1 (see below).

The key to exploiting equation (31) is that the moments of F0 are also polynomials in λ.

Specifically, with F0 defined by equation (10), the ith moment, E(F i
0), is a polynomial of λ

of degree i. Writing P in the polynomial form (31), it can therefore be estimated by another

polynomial in F0 as follows

P̂P =
r∑

i=0

bi F
i
0, (32)

where the coefficients bi (i = 0, . . . , r) are determined such that

r∑

i=0

bi E(F i
0) =

r∑

i=0

ai λ
i. (33)

This ensures the approximate unbiasedness of P̂P in estimating P . The coefficients bi (i =

0, . . . , r) can be obtained by equating the coefficients of the corresponding terms of the poly-

nomials on the two sides of (33). To do that, we used the computer algebraic system Maple

16.
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Although this computer algebraic system does not give explicit symbolic formulas for the

raw moments of a non-central F distribution without using special functions, it can efficiently

give simple explicit forms of the raw moments of a non-central chi-square distribution up to

any required order r. The former can then be obtained from the latter by using the following

straightforward relationship between the corresponding raw moments of the two distributions

(Bain, 1969):

µ′
i[Fν1,ν2(λ)] = µ′

i[χ
2
ν1
(λ)]

Γ(ν2/2− i) (ν2)
i

Γ(ν2/2) (2ν1)i
, (34)

where µ′
r[.] is the ith raw moment.

It has to be noted here that the ith raw moment of a non-central F distribution is finite only

for ν2 > 2i. This puts a constraint on the valid number r of polynomial terms to be used in the

proposed approximation. For the left hand side of (33) to be finite, r must be strictly less than

ν2/2. In other words, if n is the size of the control sample, then r must be strictly less than

(n− ν1)/2.

Now, to apply the approach outlined in equations (31)-(33) above, it remains to find a suitable

polynomial approximation to be used in (31). We use two different approximations, the first is

based on Bernstein polynomials while the second is a quadrature polynomial approximation.

These are detailed in turn in Sections 3.4.1 and 3.4.2.

3.4.1 Bernstein polynomials approximation

FromWeierstrass’s Theorem, any continuous real valued function f(x) defined on a closed interval

[a,b] can be approximated by a polynomial function. See, for example, Lorentz (1986). In 1912,

Bernstein gave a simple probabilistic constructive proof for Weierstrass’s Theorem by introducing

the Bernstein polynomials Br(f ; x) as a series of polynomials that converge uniformly to any

continuous bounded function f(x) on the closed interval [0, 1] as r → ∞. See, for example,
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Chapter (7) in Philips (2003). The rth Bernstein polynomial Br(f ; x) for f(x) is defined as:

Br(f ; x) =

r∑

i=0

(
r

i

)
xi(1− x)r−if(i/r). (35)

The polynomial function Br(f ; x) uniformly approximates f(x) on [0, 1] in the following sense

[e.g. Theorem 1, Section VII.2 in Feller (1965)]:

lim
r→∞

sup
0≤x≤1

|Br(f ; x)− f(x)| = 0. (36)

Bernstein polynomials have been extensively used for polynomial approximation of continuous

functions. In statistics, they have been used, for example, for density estimation [e.g. Thongjaem

et al. (2013) and Turnbull and Ghosh (2014)], smoothing distribution functions [e.g. Babu et al.

(2002) and Leblanc (2012)] and for Bayesian survival analysis and nonparametric inference [e.g.

Chang et al. (2005) and Karabatsosa and Walkerb (2007)]. Here, we use Bernstein polynomials

to obtain a polynomial approximation for the chi-square cdf to be used in (31).

Although the domain of the chi-square cdf is [0,∞), we use an affine transformation λ =

(x − a)/(b − a), for any two arbitrary values a and b, so as to work on the [0,1] interval. The

two end-points a and b are initially chosen such that the probability of getting a sample value

of the non-centrality parameter λ outside the interval [a, b] is fairly negligible. Therefore, we

initially take a = L0.999/n and b = L0.001/n where, as before, Lα is the value of nλ for which F0

is the α-quantile of Fν1,ν2(nλ). As will be shown at the end of Section 3.4, the accuracy of the

polynomial approximation is influenced by the choice of a and b. For extremely large values of b,

say above the 0.9999-quantile of the chi-square distribution, polynomial functions of small degree

r are not guaranteed to give a good approximation. Also, accuracy is greatly enhanced if a is

chosen to be just below the sample median value L0.5/n of λ. Hence, as a rule of thumb, if L0.5/n

is greater than the mode of the chi-square distribution, our final choice of a is a = 0.99(L0.5/n).
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We then approximate P in (31) by its rth Bernstein polynomial in λ of the form

Br(P ;λ) = 1−
r∑

i=0

(
r

i

)(
λ− a

b− a

)i (
b− λ

b− a

)r−i

G

(
a+ (b− a)

i

r

)
. (37)

Clearly, the above expression of Br(P ;λ) is a polynomial of degree r in λ, and we denote its

coefficients by ai (i = 0, . . . , r). The explicit form of these coefficients was obtained using the

computer algebraic system Maple 16. The coefficients of λ in the left hand side of (33) are

equated to their corresponding coefficients in the Bernstein polynomial approximation (37) so as

to obtain the values of bi and, hence, P̂P in equation (32). In this paper, we obtain the estimate

P̂P for r = 4, 7 and 10, and denote it by P̂B4, P̂B7 and P̂B10, respectively.

3.4.2 Quadrature polynomial approximation

We adopt the quadrature formula of Sahai et al. (2004) to obtain another polynomial approx-

imation for P . This quadrature formula gives polynomial approximations to the integration of

real valued continuous functions defined on the closed interval [0,1]. Specifically, a function f(x)

on [0,1] is approximated by a polynomial in x of degree r as

Q(x) =

r∑

i=0

(
r x

i

)(
r (1− x)

r − i

)
f(xi), (38)

where xi = i/r (i = 0, . . . , r) partition the interval [0,1] into r equal segments. The polynomial

function Q(x) can then be easily integrated over any sub-interval in [0,1]. It has been shown

empirically that the approximation has good accuracy even when r is small. For example, it was

used by Richard et al. (2010) to obtain an efficient polynomial approximation of degree 9 to the

normal distribution function and its inverse function.

Here, we apply the quadrature formula to approximate the density function of a chi-square

distribution on ν1 degrees of freedom with a polynomial of degree r − 1, which then yields the

approximation in (31) after a straightforward symbolic integration of the polynomial.
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To work on the [0,1] interval, we adopt the approach discussed in Section 3.4.1 for choosing

the two end-points a and b, with the same affine transformation λ = (x − a)/(b − a). The

probability P can now be approximated as

PQ = 1− Pr(χ2
ν1

< λ)

≃ 1−G(a)−
∫ λ−a

b−a

x=0

{
r−1∑

i=0

(
(r − 1) x

i

)(
(r − 1) (1− x)

r − i− 1

)
× (b− a) g[a+

i

r − 1
(b− a)]

}
dx,

(39)

where g[.] is the density function of a chi-square random variable with ν1 degrees of freedom.

The coefficients of λ in the expression of PQ in (39) above are again denoted by ai (i =

0, . . . , r), with their explicit forms obtained using Maple 16. The coefficients of λ in the left

hand side of (33) are equated to their corresponding coefficients in the quadrature polynomial

approximation PQ in (39) so as to obtain bi (i = 0, . . . , r). This gives another form of P̂P

(equation (32)). Here we determine it for r = 4, 7 and 10, and denote the resulting estimators

by P̂Q4, P̂Q7 and P̂Q10, respectively. Simulation results show that these estimators are usually

marginally better than those based on Bernstein polynomials.

Based on the simulation results, it will be shown in the next section that biasedness of

the estimators reduces as the number of terms r of the polynomial approximation is increased.

However, as discussed before, increasing r is restricted by the size n of the available control

sample. Hence, it is worth emphasizing again that a polynomial approximation of r terms should

only be used if n > 2r + ν1.

In general, polynomial functions give approximations that are accurate only on specific in-

tervals of the domain of the underlying approximated function. The accuracy of the polynomial

approximations that we use is highly related to the values selected as the two interval end-points,

a and b. Figures 3-5 below show Bernstein and quadrature polynomial approximations for three
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choices of [a, b]. The cdf of a chi-square distribution on degrees of freedom ν1 = 4 is plotted

together with its Bernstein approximation and quadrature polynomial approximation, each of

degree r = 7.

Figure 3: [a, b] = [0, 18]. Figure 4: [a, b] = [0, 30]. Figure 5: [a, b] = [4, 30].

Figure 3 shows that both polynomial approximations give good accuracy when [a, b] is the

rather short interval [0,18] of the cdf domain. The value b = 18 is near the boundary of plausible

values for a χ2
4 variate, as 18 is the 0.999 quantile of a χ2

4 distribution. For extremely large values

of b, neither polynomial approximation of degree 7 is expected to attain good accuracy. This can

be seen in Figure 4, where b = 30. For the same extreme value of b = 30, if a is above the mode

of this chi-square distribution (i.e. a > 2), remarkably better accuracy is obtained, especially

for the quadrature approximation. This is shown in Figure 5, where a = 4 and b = 30. This

argument motivates our choice of a and b that was discussed in Section 3.4.1, as the behavior of

both polynomial approximations tends to be the same for all values of ν1.

Under the suggested criteria for choosing a and b, Figures 3 and 5 provide a rough guide

for comparing the two approximations. Although the Bernstein polynomial approximation tends

to be more accurate than the quadrature polynomial approximation for values near a or b, the

quadrature approximation overall attains better accuracy over the whole interval [a, b].
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4 Simulation Results

In practice, we expect ν1, the number of test scores on each individual, to be small, while n

(n = ν2+ν1), the number of people in the control sample, may be large. Therefore, we conducted

a simulation study that examined combinations of ν1 = 2, 4, 8, and 16, with ν2 = 10, 20, 40, 80

and 160. Based on 100,000 samples for each combination, we tested the performance of each of

the proposed estimators in terms of their estimated values P̂ , recording their bias and the root

of mean square error (MSE). The true values of P that we examined were 1%, 2.5%, 5%, 10%,

20% and 40%.

Table 2 shows the simulation results for ν1 = 2 and 4, and ν2 = 10. In terms of the bias and

root MSE, P̂χ2 , P̂Q4 and P̂T are the best three estimators when ν1 = 2. P̂χ2 is slightly better

than P̂Q4 and P̂T up to P = 10%, but for P = 20% and 40%, the estimators P̂Q4 and P̂T are

remarkably better than P̂χ2 in terms of their bias, with P̂Q4 being the best. At ν1 = 4, the table

shows that P̂χ2 , P̂Q4 and P̂T are again the best three estimators, with P̂Q4 showing less bias than

P̂χ2 for true values of P of 10% or more. This suggests that, at small values of ν2, the best two

competitor estimates are P̂χ2 and P̂Q4, where the former is doing better at smaller values of the

true probability P .

An important point from Table 2 is the cautionary message that each of the methods shows

noticeable bias for some values of P at some combinations of ν1 and ν2. Four methods perform

particularly poorly: P̂F , P̂BY , P̂M , P̂R.

Table 3 shows the simulation results at ν1 = 2, 4 and 8, and ν2 = 20. For all listed values of

ν1, the three estimates P̂χ2, P̂Q4 and P̂Q7 are doing better than the others. It has to be noted

that, in most cases even for small values of P , the bias of both P̂Q4 and P̂Q7 is less than that of

P̂χ2. However, the root MSE of P̂χ2 is always less than those of P̂Q4 and P̂Q7. Comparing P̂Q4 to
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Table 2: Bias and root mean square error of the proposed estimates of P at ν2 = 10
ν1

1% 2.5% 5% 10% 20% 40%
P̂ bias

√
M P̂ bias

√
M P̂ bias

√
M P̂ bias

√
M P̂ bias

√
M P̂ bias

√
M

2 P̂F 5.6 4.6 7.1 8.4 5.9 9.4 11.8 6.8 11.5 17.2 7.2 14.0 26.2 6.2 16.5 42.3 2.3 18.7
P̂χ2 1.3 0.3 2.5 2.6 0.1 4.1 4.5 -0.5 6.1 8.2 -1.8 9.3 15.5 -4.5 14.2 31.0 -9.0 21.2

P̂D 2.8 1.8 4.6 5.0 2.5 6.9 8.0 3.0 9.3 13.3 3.3 12.5 22.7 2.7 16.5 40.3 0.3 20.6
P̂MD 2.8 1.8 4.6 5.0 2.5 6.9 8.0 3.0 9.3 13.3 3.3 12.4 22.4 2.4 16.0 39.0 -1.0 19.1
P̂BY 5.5 4.5 6.9 8.0 5.5 8.9 11.4 6.4 11.1 17.2 7.2 13.9 25.4 5.4 16.1 42.1 2.1 19.1
P̂M 4.4 3.4 6.8 7.4 4.9 9.7 11.4 6.4 12.7 17.8 7.8 16.3 28.6 8.6 20.1 47.5 7.5 22.8
P̂R 7.8 6.8 10.6 11.9 9.4 14.2 16.8 11.8 17.5 24.0 14.0 20.9 35.1 15.1 23.5 52.5 12.5 22.8
P̂T 1.8 0.8 3.9 3.7 1.2 6.2 6.6 1.6 9.1 12.0 2.0 13.0 22.1 2.1 18.1 41.7 1.7 22.9
P̂B4 3.0 2.0 5.0 5.3 2.8 7.4 8.6 3.6 10.1 14.2 4.2 13.7 24.3 4.3 18.1 43.2 3.2 22.1
P̂Q4 1.9 0.9 3.8 3.8 1.3 6.2 6.6 1.6 8.9 11.9 1.9 12.8 21.9 1.9 17.8 41.3 1.3 22.8

4 P̂F 8.0 7.0 10.5 11.1 8.6 13.2 14.7 9.7 15.4 20.1 10.1 17.6 28.4 8.4 19.4 42.5 2.5 20.6
P̂χ2 0.8 -0.2 2.2 1.6 -0.9 3.7 2.9 -2.1 5.7 5.3 -4.7 9.3 10.4 -9.6 15.7 21.9 -18.1 26.2

P̂D 3.8 2.8 7.1 6.4 3.9 9.9 9.7 4.7 12.8 15.1 5.1 16.2 24.1 4.1 20.2 40.3 0.3 23.9
P̂MD 3.8 2.8 7.0 6.4 3.9 9.8 9.7 4.7 12.5 14.9 4.9 15.7 23.4 3.4 18.7 37.9 -2.1 21.1
P̂BY 8.2 7.2 10.7 10.9 8.4 13.2 14.7 9.7 15.3 19.4 9.4 17.4 28.2 8.2 19.4 42.9 2.9 20.5
P̂M 6.3 5.3 10.4 9.9 7.4 14.1 14.2 9.2 17.5 20.8 10.8 21.2 31.2 11.2 24.7 48.4 8.4 26.1
P̂R 11.6 10.6 16.4 16.5 14.0 20.9 22.0 17.0 24.7 29.7 19.7 28.3 40.6 20.6 30.5 56.9 16.9 28.2
P̂T 2.6 1.6 6.4 4.9 2.4 9.7 8.3 3.3 13.4 14.1 4.1 18.0 24.5 4.5 23.7 43.5 3.5 28.4
P̂B4 4.1 3.1 7.6 6.8 4.3 10.7 10.4 5.4 13.8 16.1 6.1 17.7 25.9 5.9 22.1 43.1 3.1 25.5
P̂Q4 2.4 1.4 5.8 4.5 2.0 8.8 7.6 2.6 12.2 12.9 2.9 16.6 22.7 2.7 22.5 41.7 1.7 28.7

P̂Q7, it can be seen in Table 3 that P̂Q7 is better than P̂Q4 in terms of their bias, although the

root MSE of P̂Q4 is slightly greater than that of P̂Q7 for all values of the true probability except

P = 1%. This suggests that P̂Q7 is the best estimate at ν2 = 20 as it has rather small values of

both bias and root MSE for all values of the true probability P .

At ν2 = 40, simulation results of ν1 = 2, 4, 8 and 16 are shown in Table 4. This value of

ν2 is large enough for the estimators P̂Q10 and P̂B10 to be computed. Table 4 shows that the

quadrature polynomial based estimates P̂Q4, P̂Q7 and P̂Q10 are giving very good results in terms

of bias, where the bias of P̂Q10 is always less than or equal to those of P̂Q4 and P̂Q7. Again, these

quadrature polynomial based estimates are better than P̂χ2 in the sense of their bias, although

P̂χ2 still has a slightly lower root MSE. However, the differences in root MSE are slight, so in

Table4 P̂Q10 seems the estimator with the best results.
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Table 3: Bias and root mean square error of the proposed estimates of P at ν2 = 20
ν1

1% 2.5% 5% 10% 20% 40%
P̂ bias

√
M P̂ bias

√
M P̂ bias

√
M P̂ bias

√
M P̂ bias

√
M P̂ bias

√
M

2 P̂F 3.2 2.2 3.8 5.6 3.1 5.6 8.7 3.7 7.4 14.1 4.1 9.6 23.5 3.5 12.2 41.2 1.2 14.6
P̂χ2 1.2 0.2 1.8 2.6 0.1 3.1 4.7 -0.3 4.8 8.9 -1.1 7.4 17.4 -2.6 11.2 34.9 -5.1 15.9

P̂D 1.9 0.9 2.6 3.8 1.3 4.3 6.6 1.6 6.2 11.8 1.8 8.8 21.3 1.3 12.1 40.0 0.0 15.5
P̂MD 1.9 0.9 2.6 3.9 1.4 4.3 6.7 1.7 6.2 11.8 1.8 8.8 21.4 1.4 12.1 39.7 -0.3 15.0
P̂BY 3.2 2.2 3.8 5.7 3.2 5.8 8.8 3.8 7.3 14.1 4.1 9.4 23.4 3.4 12.0 41.5 1.5 14.7
P̂M 2.5 1.5 3.3 4.8 2.3 5.3 8.0 3.0 7.4 13.8 3.8 10.2 24.2 4.2 13.5 43.6 3.6 16.3
P̂R 3.4 2.4 4.4 6.2 3.7 6.6 9.9 4.9 8.9 16.2 6.2 11.8 26.8 6.8 14.5 45.6 5.6 16.0
P̂T 1.3 0.3 2.1 2.9 0.4 3.8 5.5 0.5 5.8 10.6 0.6 8.8 20.5 0.5 12.8 40.4 0.4 16.5
P̂B4 1.9 0.9 2.6 3.8 1.3 4.4 6.7 1.7 6.4 12.0 2.0 9.2 21.9 1.9 12.7 41.4 1.4 16.2
P̂Q4 1.2 0.2 2.0 2.7 0.2 3.7 5.3 0.3 5.8 10.4 0.4 8.8 20.3 0.3 12.7 40.2 0.2 16.6

P̂B7 1.6 0.6 2.4 3.4 0.9 4.1 6.2 1.2 6.1 11.4 1.4 9.0 21.3 1.3 12.7 40.9 0.9 16.3
P̂Q7 0.9 -0.1 1.9 2.4 -0.1 3.6 4.9 -0.1 5.7 10.0 0.0 8.8 19.9 -0.1 12.9 40.0 0.0 16.7

4 P̂F 4.5 3.5 5.7 7.2 4.7 8.0 10.6 5.6 10.1 16.0 6.0 12.4 25.1 5.1 14.8 41.3 1.3 16.8
P̂χ2 0.9 -0.1 1.8 2.0 -0.5 3.2 3.7 -1.3 5.1 6.9 -3.1 8.1 13.7 -6.3 13.1 28.6 -11.4 20.3

P̂D 2.4 1.4 3.9 4.6 2.1 6.0 7.6 2.6 8.3 12.8 2.8 11.4 22.3 2.3 15.0 39.9 -0.1 18.4
P̂MD 2.4 1.4 3.9 4.6 2.1 6.1 7.7 2.7 8.4 12.9 2.9 11.3 22.1 2.1 14.7 39.0 -1.0 17.3
P̂BY 4.2 3.2 5.4 7.3 4.8 7.9 10.7 5.7 9.8 15.4 5.4 11.6 24.5 4.5 15.2 42.2 2.2 16.8
P̂M 3.2 2.2 4.9 5.9 3.4 7.5 9.5 4.5 10.1 15.4 5.4 13.4 25.7 5.7 16.9 44.1 4.1 19.2
P̂R 4.6 3.6 6.5 7.9 5.4 9.5 12.0 7.0 12.4 18.6 8.6 15.7 29.4 9.4 18.8 47.5 7.5 19.5
P̂T 1.5 0.5 3.1 3.3 0.8 5.3 6.0 1.0 7.9 11.3 1.3 11.6 21.3 1.3 16.3 40.8 0.8 20.5
P̂B4 2.4 1.4 3.8 4.5 2.0 6.1 7.6 2.6 8.5 13.0 3.0 11.8 22.8 2.8 15.8 41.2 1.2 19.3
P̂Q4 1.2 0.2 2.8 2.9 0.4 5.0 5.5 0.5 7.6 10.6 0.6 11.3 20.5 0.5 16.1 40.0 0.0 20.7

P̂B7 1.9 0.9 3.4 3.9 1.4 5.6 6.8 1.8 8.1 12.1 2.1 11.6 22.0 2.0 15.9 40.8 0.8 19.8
P̂Q7 0.9 -0.1 2.6 2.4 -0.1 4.9 5.0 0.0 7.6 10.0 0.0 11.5 20.1 0.1 16.5 40.0 0.0 21.0

8 P̂F 6.6 5.6 8.9 9.8 7.3 11.6 13.5 8.5 14.0 19.0 9.0 16.4 27.5 7.5 18.4 42.1 2.1 19.7
P̂χ2 0.4 -0.6 1.4 1.0 -1.5 2.8 1.9 -3.1 4.9 3.7 -6.3 8.7 7.7 -12.3 15.7 17.8 -22.2 27.4

P̂D 3.4 2.4 6.1 5.9 3.4 8.9 9.2 4.2 11.8 14.6 4.6 15.2 23.8 3.8 19.1 40.4 0.4 22.6
P̂MD 3.4 2.4 6.1 5.9 3.4 8.9 9.2 4.2 11.7 14.5 4.5 14.8 23.2 3.2 17.8 38.5 -1.5 20.2
P̂BY 6.7 5.7 9.3 9.9 7.4 11.7 13.2 8.2 13.8 18.4 8.4 16.0 27.1 7.1 18.4 42.8 2.8 19.2
P̂M 4.6 3.6 7.9 7.8 5.3 11.2 11.8 6.8 14.5 18.1 8.1 18.1 28.2 8.2 21.7 45.5 5.5 23.7
P̂R 6.7 5.7 10.5 10.7 8.2 14.4 15.4 10.4 17.9 22.5 12.5 21.7 33.3 13.3 24.7 50.6 10.6 24.8
P̂T 2.0 1.0 5.1 4.1 1.6 8.2 7.3 2.3 11.6 12.8 2.8 16.1 23.0 3.0 21.6 42.0 2.0 26.3
P̂B4 3.2 2.2 6.0 5.7 3.2 8.9 9.1 4.1 11.9 14.6 4.6 15.6 24.2 4.2 19.9 41.3 1.3 23.4
P̂Q4 1.5 0.5 4.4 3.3 0.8 7.3 6.1 1.1 10.6 11.2 1.2 15.0 20.8 0.8 20.6 39.3 -0.7 25.6

P̂B7 2.6 1.6 5.4 4.8 2.3 8.3 8.0 3.0 11.4 13.4 3.4 15.4 23.0 3.0 20.3 40.9 0.9 24.6
P̂Q7 1.1 0.1 4.2 2.7 0.2 7.2 5.4 0.4 10.8 10.5 0.5 15.6 20.6 0.6 22.0 40.4 0.4 27.7

Simulation results for ν2 = 80 (ν1 = 2, 4, 8 and 16) and ν2 = 160 (ν1 = 2, 4, 8 and 16)

are presented in Tables 5 and 6, respectively. Results in both tables suggest that all estimators

are doing well at these very large sample sizes. Values of bias and root MSE seem close to each

other for all estimators. However, the estimators based on polynomial approximations are still

relatively better than the others. Quadrature based estimators P̂Q4, P̂Q7 and P̂Q10 have very low

bias at ν2 = 80 in Table 5, while the three of them are exactly attaining the true nominal values

of P at ν2 = 160 in Table 6.
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Table 4: Bias and root mean square error of the proposed estimates of P at ν2 = 40
ν1

1% 2.5% 5% 10% 20% 40%
P̂ bias

√
M P̂ bias

√
M P̂ bias

√
M P̂ bias

√
M P̂ bias

√
M P̂ bias

√
M

2 P̂F 2.1 1.1 2.1 4.1 1.6 3.3 7.0 2.0 4.7 12.2 2.2 6.6 21.9 1.9 8.9 40.6 0.6 11.0
P̂χ2 1.1 0.1 1.2 2.6 0.1 2.3 4.9 -0.1 3.6 9.4 -0.6 5.6 18.6 -1.4 8.5 37.3 -2.7 11.6

P̂D 1.5 0.5 1.6 3.2 0.7 2.7 5.9 0.9 4.2 10.9 0.9 6.2 20.7 0.7 8.9 40.0 0.0 11.4
P̂MD 1.5 0.5 1.6 3.2 0.7 2.8 5.9 0.9 4.2 11.0 1.0 6.2 20.7 0.7 8.8 39.9 -0.1 11.3
P̂BY 2.1 1.1 2.0 4.1 1.6 3.3 7.0 2.0 4.6 12.2 2.2 6.6 22.1 2.1 8.9 39.9 -0.1 10.7
P̂M 1.7 0.7 1.8 3.6 1.1 3.1 6.5 1.5 4.6 11.9 1.9 6.8 22.1 2.1 9.4 41.8 1.8 11.7
P̂R 2.0 1.0 2.1 4.1 1.6 3.6 7.3 2.3 5.2 12.9 2.9 7.3 23.3 3.3 9.7 42.7 2.7 11.5
P̂T 1.1 0.1 1.3 2.6 0.1 2.5 5.2 0.2 4.0 10.2 0.2 6.2 20.2 0.2 9.1 40.1 0.1 11.8
P̂B4 1.4 0.4 1.5 3.1 0.6 2.7 5.8 0.8 4.2 10.9 0.9 6.3 20.9 0.9 9.1 40.6 0.6 11.7
P̂Q4 1.0 0.0 1.3 2.5 0.0 2.5 5.0 0.0 4.0 10.1 0.1 6.2 20.0 0.0 9.1 40.0 0.0 11.8

P̂B7 1.3 0.3 1.4 2.9 0.4 2.6 5.5 0.5 4.1 10.6 0.6 6.3 20.6 0.6 9.1 40.4 0.4 11.7
P̂Q7 1.0 0.0 1.3 2.5 0.0 2.4 5.0 0.0 4.0 10.0 0.0 6.2 20.0 0.0 9.1 40.0 0.0 11.8

P̂B10 1.2 0.2 1.4 2.8 0.3 2.6 5.4 0.4 4.1 10.5 0.5 6.2 20.4 0.4 9.1 40.3 0.3 11.7
P̂Q10 1.0 0.0 1.3 2.5 0.0 2.4 5.0 0.0 4.0 10.0 0.0 6.2 20.0 0.0 9.1 40.0 0.0 11.8

4 P̂F 2.7 1.7 3.1 5.0 2.5 4.7 8.0 3.0 6.4 13.3 3.3 8.5 22.9 2.9 11.0 40.7 0.7 13.1
P̂χ2 1.0 0.0 1.4 2.2 -0.3 2.5 4.2 -0.8 4.1 8.2 -1.8 6.5 16.3 -3.7 10.3 33.5 -6.5 14.8

P̂D 1.7 0.7 2.2 3.6 1.1 3.7 6.4 1.4 5.5 11.5 1.5 7.9 21.2 1.2 11.1 39.9 -0.1 13.9
P̂MD 1.7 0.7 2.2 3.6 1.1 3.7 6.4 1.4 5.5 11.5 1.5 7.9 21.2 1.2 11.0 39.6 -0.4 13.4
P̂BY 2.7 1.7 3.0 4.8 2.3 4.4 8.1 3.1 6.4 13.1 3.1 8.2 22.9 2.9 11.2 41.0 1.0 12.9
P̂M 2.0 1.0 2.6 4.1 1.6 4.3 7.2 2.2 6.2 12.7 2.7 8.7 22.9 2.9 11.8 42.1 2.1 14.2
P̂R 2.5 1.5 3.1 4.9 2.4 4.9 8.2 3.2 7.0 14.1 4.1 9.6 24.5 4.5 12.4 43.6 3.6 14.2
P̂T 1.2 0.2 1.7 2.7 0.2 3.2 5.3 0.3 5.1 10.3 0.3 7.9 20.3 0.3 11.6 40.2 0.2 14.7
P̂B4 1.6 0.6 2.1 3.4 0.9 3.6 6.2 1.2 5.4 11.4 1.4 8.0 21.2 1.2 11.4 40.6 0.6 14.3
P̂Q4 1.0 0.0 1.7 2.6 0.1 3.2 5.1 0.1 5.1 10.1 0.1 7.9 20.0 0.0 11.6 40.0 0.0 14.8

P̂B7 1.4 0.4 1.9 3.1 0.6 3.4 5.8 0.8 5.3 10.9 0.9 7.9 20.8 0.8 11.4 40.4 0.4 14.5
P̂Q7 1.0 0.0 1.6 2.5 0.0 3.1 5.0 0.0 5.1 10.0 0.0 7.9 20.0 0.0 11.6 40.0 0.0 14.9

P̂B10 1.3 0.3 1.9 3.0 0.5 3.4 5.6 0.6 5.2 10.7 0.7 7.9 20.6 0.6 11.5 40.3 0.3 14.6
P̂Q10 1.0 0.0 1.6 2.5 0.0 3.1 5.0 0.0 5.1 10.0 0.0 7.9 20.0 0.0 11.6 40.0 0.0 14.9

8 P̂F 3.8 2.8 4.8 6.4 3.9 6.9 9.8 4.8 9.0 15.3 5.3 11.5 24.6 4.6 14.0 41.2 1.2 15.9
P̂χ2 0.6 -0.4 1.3 1.5 -1.0 2.6 2.9 -2.1 4.4 5.7 -4.3 7.5 11.7 -8.3 12.8 25.8 -14.2 20.7

P̂D 2.2 1.2 3.4 4.3 1.8 5.3 7.3 2.3 7.6 12.6 2.6 10.6 22.2 2.2 14.2 40.2 0.2 17.4
P̂MD 2.2 1.2 3.3 4.3 1.8 5.4 7.3 2.3 7.6 12.5 2.5 10.5 22.0 2.0 13.9 39.3 -0.7 16.3
P̂BY 3.7 2.7 4.7 6.5 4.0 7.1 9.5 4.5 8.8 15.0 5.0 11.6 24.7 4.7 14.2 41.0 1.0 16.1
P̂M 2.7 1.7 4.0 5.1 2.6 6.2 8.4 3.4 8.7 14.2 4.2 11.8 24.4 4.4 15.3 42.8 2.8 17.8
P̂R 3.3 2.3 4.7 6.1 3.6 7.2 9.8 4.8 9.9 16.1 6.1 13.2 26.6 6.6 16.4 45.1 5.1 18.1
P̂T 1.3 0.3 2.6 3.0 0.5 4.6 5.7 0.7 7.0 10.9 0.9 10.7 20.9 0.9 15.2 40.6 0.6 19.1
P̂B4 2.0 1.0 3.2 4.0 1.5 5.2 7.0 2.0 7.5 12.3 2.3 10.7 22.0 2.0 14.6 40.6 0.6 18.0
P̂Q4 1.1 0.1 2.4 2.6 0.1 4.4 5.2 0.2 6.8 10.3 0.3 10.5 20.2 0.2 15.1 39.9 -0.1 19.2

P̂B7 1.7 0.7 2.9 3.6 1.1 4.8 6.4 1.4 7.2 11.6 1.6 10.6 21.4 1.4 14.7 40.4 0.4 18.5
P̂Q7 1.0 0.0 2.3 2.5 0.0 4.3 5.0 0.0 6.8 10.1 0.1 10.6 20.1 0.1 15.3 40.1 0.1 19.5

P̂B10 1.5 0.5 2.7 3.3 0.8 4.7 6.0 1.0 7.1 11.2 1.2 10.5 21.1 1.1 14.9 40.3 0.3 18.7
P̂Q10 1.0 0.0 2.3 2.5 0.0 4.3 5.0 0.0 6.8 10.1 0.1 10.6 20.1 0.1 15.3 40.0 0.0 19.5

16 P̂F 5.8 4.8 7.9 8.9 6.4 10.7 12.6 7.6 13.1 18.2 8.2 15.6 27.0 7.0 17.8 42.1 2.1 19.2
P̂χ2 0.2 -0.8 1.1 0.5 -2.0 2.4 1.0 -4.0 4.6 2.2 -7.8 8.8 4.9 -15.1 16.7 12.7 -27.3 30.2

P̂D 3.1 2.1 5.5 5.6 3.1 8.3 8.9 3.9 11.1 14.3 4.3 14.5 23.7 3.7 18.5 40.6 0.6 21.9
P̂MD 3.1 2.1 5.5 5.6 3.1 8.3 8.9 3.9 10.9 14.3 4.3 14.2 23.2 3.2 17.4 38.9 -1.1 19.7
P̂BY 6.0 5.0 8.2 9.0 6.5 10.9 12.1 7.1 12.7 18.0 8.0 15.1 27.0 7.0 18.1 41.3 1.3 19.3
P̂M 3.8 2.8 6.6 6.7 4.2 9.7 10.5 5.5 12.8 16.4 6.4 16.3 26.5 6.5 20.1 44.0 4.0 22.5
P̂R 4.9 3.9 7.9 8.2 5.7 11.4 12.5 7.5 14.7 19.0 9.0 18.4 29.7 9.6 21.9 47.3 7.3 23.2
P̂T 1.8 0.8 4.4 3.7 1.2 7.3 6.7 1.7 10.6 12.0 2.0 14.9 22.1 2.1 20.4 41.3 1.3 25.2
P̂B4 2.8 1.8 5.2 5.1 2.6 7.9 8.3 3.3 10.8 13.6 3.6 14.4 23.1 3.1 18.7 40.4 0.4 22.3
P̂Q4 1.2 0.2 3.8 2.9 0.4 6.6 5.5 0.5 9.8 10.5 0.5 14.1 20.1 0.1 19.6 38.5 -1.5 24.3

P̂B7 2.2 1.2 4.6 4.3 1.8 7.3 7.3 2.3 10.4 12.6 2.6 14.3 22.2 2.1 19.2 40.1 0.1 23.5
P̂Q7 1.0 0.0 3.7 2.6 0.1 6.5 5.2 0.2 9.9 10.1 0.1 14.6 20.1 0.1 20.8 40.0 0.0 26.5

P̂B10 1.9 0.9 4.4 3.9 1.4 7.1 6.8 1.8 10.2 12.0 2.0 14.3 21.7 1.7 19.5 40.1 0.1 24.2
P̂Q10 1.0 0.0 3.6 2.5 0.0 6.4 5.0 0.0 9.9 10.0 0.0 14.7 20.0 0.0 21.0 40.0 0.0 26.7
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Table 5: Bias and root mean square error of the proposed estimates of P at ν2 = 80
ν1

1% 2.5% 5% 10% 20% 40%
P̂ bias

√
M P̂ bias

√
M P̂ bias

√
M P̂ bias

√
M P̂ bias

√
M P̂ bias

√
M

2 P̂F 1.5 0.5 1.2 3.3 0.8 2.0 6.0 1.0 3.1 11.2 1.2 4.5 21.0 1.0 6.4 40.3 0.3 8.1
P̂χ2 1.1 0.1 0.8 2.5 0.0 1.6 5.0 0.0 2.6 9.7 -0.3 4.2 19.2 -0.8 6.2 38.6 -1.4 8.3

P̂D 1.2 0.2 1.0 2.8 0.3 1.8 5.5 0.5 2.8 10.5 0.5 4.4 20.4 0.4 6.4 40.0 0.0 8.2
P̂MD 1.2 0.2 1.0 2.9 0.4 1.8 5.4 0.4 2.9 10.5 0.5 4.4 20.4 0.4 6.4 40.0 0.0 8.2
P̂BY 1.6 0.6 1.2 3.3 0.8 2.0 6.1 1.1 3.2 11.2 1.2 4.3 20.9 0.9 6.4 40.2 0.2 8.1
P̂M 1.3 0.3 1.1 3.0 0.5 1.9 5.8 0.8 3.0 11.0 1.0 4.6 21.1 1.1 6.6 40.9 0.9 8.3
P̂R 1.5 0.5 1.2 3.3 0.8 2.1 6.1 1.1 3.2 11.4 1.4 4.8 21.6 1.6 6.7 41.3 1.3 8.2
P̂T 1.0 0.0 0.9 2.5 0.0 1.7 5.0 0.0 2.8 10.1 0.1 4.4 20.0 0.0 6.5 40.0 0.0 8.4
P̂B4 1.2 0.2 0.9 2.8 0.3 1.8 5.4 0.4 2.8 10.4 0.4 4.4 20.4 0.4 6.5 40.3 0.3 8.3
P̂Q4 1.0 0.0 0.8 2.5 0.0 1.7 5.0 0.0 2.8 10.0 0.0 4.4 20.0 0.0 6.5 40.0 0.0 8.4

P̂B7 1.1 0.1 0.9 2.7 0.2 1.7 5.2 0.2 2.8 10.3 0.3 4.4 20.3 0.3 6.5 40.2 0.2 8.3
P̂Q7 1.0 0.0 0.8 2.5 0.0 1.7 5.0 0.0 2.8 10.0 0.0 4.4 20.0 0.0 6.5 40.0 0.0 8.4

P̂B10 1.1 0.1 0.9 2.6 0.1 1.7 5.2 0.2 2.8 10.2 0.2 4.4 20.2 0.2 6.5 40.1 0.1 8.3
P̂Q10 1.0 0.0 0.8 2.5 0.0 1.7 5.0 0.0 2.8 10.0 0.0 4.4 20.0 0.0 6.5 40.0 0.0 8.4

4 P̂F 1.8 0.8 1.7 3.8 1.3 2.8 6.6 1.6 4.1 11.8 1.8 5.8 21.5 1.5 8.0 40.4 0.4 9.8
P̂χ2 1.0 0.0 1.0 2.4 -0.1 1.9 4.6 -0.4 3.1 9.0 -1.0 5.0 18.0 -2.0 7.7 36.5 -3.5 10.5

P̂D 1.4 0.4 1.3 3.1 0.6 2.4 5.7 0.7 3.7 10.8 0.8 5.5 20.6 0.6 8.0 39.9 -0.1 10.1
P̂MD 1.4 0.4 1.3 3.1 0.6 2.4 5.7 0.7 3.7 10.8 0.8 5.6 20.6 0.6 8.0 39.9 -0.1 9.9
P̂BY 1.8 0.8 1.7 3.7 1.2 2.8 6.6 1.6 4.1 11.6 1.6 5.8 21.3 1.3 7.8 40.4 0.4 9.9
P̂M 1.5 0.5 1.4 3.3 0.8 2.6 6.1 1.1 3.9 11.4 1.4 5.8 21.5 1.5 8.3 41.0 1.0 10.2
P̂R 1.7 0.7 1.6 3.6 1.1 2.8 6.5 1.5 4.2 12.0 2.0 6.1 22.2 2.2 8.5 41.7 1.7 10.2
P̂T 1.0 0.0 1.1 2.6 0.1 2.1 5.1 0.1 3.5 10.1 0.1 5.5 20.1 0.1 8.2 40.0 0.0 10.4
P̂B4 1.3 0.3 1.2 2.9 0.4 2.3 5.6 0.6 3.6 10.6 0.6 5.6 20.6 0.6 8.1 40.3 0.3 10.3
P̂Q4 1.0 0.0 1.1 2.5 0.0 2.1 5.0 0.0 3.5 10.0 0.0 5.5 20.0 0.0 8.2 40.0 0.0 10.4

P̂B7 1.2 0.2 1.2 2.8 0.3 2.2 5.4 0.4 3.6 10.4 0.4 5.5 20.4 0.4 8.1 40.1 0.1 10.3
P̂Q7 1.0 0.0 1.1 2.5 0.0 2.1 5.0 0.0 3.5 10.0 0.0 5.5 20.0 0.0 8.2 40.0 0.0 10.4

P̂B10 1.1 0.1 1.1 2.7 0.2 2.2 5.3 0.3 3.5 10.3 0.3 5.5 20.3 0.3 8.2 40.1 0.1 10.4
P̂Q10 1.0 0.0 1.1 2.5 0.0 2.1 5.0 0.0 3.5 10.0 0.0 5.5 20.0 0.0 8.2 40.0 0.0 10.4

8 P̂F 2.4 1.4 2.6 4.5 2.0 4.1 7.6 2.6 5.7 12.9 2.9 7.8 22.6 2.6 10.3 40.6 0.6 12.3
P̂χ2 0.8 -0.2 1.1 1.9 -0.6 2.1 3.7 -1.3 3.6 7.4 -2.6 6.0 15.1 -4.9 9.9 31.9 -8.1 14.6

P̂D 1.6 0.6 1.9 3.4 0.9 3.3 6.2 1.2 5.0 11.4 1.4 7.3 21.1 1.1 10.3 40.0 0.0 13.0
P̂MD 1.6 0.6 1.9 3.4 0.9 3.3 6.2 1.2 5.0 11.4 1.4 7.3 21.1 1.1 10.3 39.7 -0.3 12.5
P̂BY 2.4 1.4 2.6 4.4 1.9 3.9 7.3 2.3 5.6 12.8 2.8 7.9 22.3 2.3 10.1 40.9 0.9 12.2
P̂M 1.8 0.8 2.1 3.8 1.3 3.6 6.7 1.7 5.4 12.1 2.1 7.8 22.2 2.2 10.7 41.4 1.4 13.1
P̂R 2.0 1.0 2.3 4.2 1.7 4.0 7.3 2.3 5.8 13.0 3.0 8.3 23.3 3.3 11.1 42.5 2.5 13.2
P̂T 1.1 0.1 1.5 2.7 0.2 2.9 5.2 0.2 4.6 10.3 0.3 7.2 20.3 0.3 10.7 40.1 0.1 13.7
P̂B4 1.5 0.5 1.8 3.2 0.7 3.2 5.9 0.9 4.9 11.1 1.1 7.3 20.9 0.9 10.5 40.3 0.3 13.3
P̂Q4 1.0 0.0 1.5 2.5 0.0 2.8 5.0 0.0 4.6 10.0 0.0 7.2 20.0 0.0 10.7 40.0 0.0 13.7

P̂B7 1.3 0.3 1.6 3.0 0.5 3.0 5.6 0.6 4.7 10.7 0.7 7.2 20.6 0.6 10.5 40.1 0.1 13.5
P̂Q7 1.0 0.0 1.4 2.5 0.0 2.8 5.0 0.0 4.6 10.0 0.0 7.2 20.0 0.0 10.7 40.0 0.0 13.8

P̂B10 1.2 0.2 1.6 2.9 0.4 3.0 5.5 0.5 4.7 10.5 0.5 7.2 20.4 0.4 10.6 40.1 0.1 13.6
P̂Q10 1.0 0.0 1.4 2.5 0.0 2.8 5.0 0.0 4.6 10.0 0.0 7.2 20.0 0.0 10.7 40.0 0.0 13.8

16 P̂F 3.4 2.4 4.2 5.9 3.4 6.2 9.2 4.2 8.3 14.8 4.8 10.8 24.2 4.2 13.4 41.3 1.3 15.5
P̂χ2 0.4 -0.6 1.0 1.0 -1.5 2.2 2.0 -3.0 4.1 4.3 -5.7 7.5 9.3 -10.7 13.4 21.9 -18.1 22.5

P̂D 2.0 1.0 3.0 4.1 1.6 4.9 7.0 2.0 7.0 12.4 2.4 10.0 22.1 2.1 13.6 40.3 0.3 16.8
P̂MD 2.0 1.0 3.0 4.1 1.6 4.9 7.1 2.1 7.1 12.3 2.3 9.9 21.9 1.9 13.4 39.5 -0.5 15.8
P̂BY 3.4 2.4 4.3 5.7 3.2 6.1 8.9 3.9 7.9 14.7 4.7 10.7 24.2 4.2 13.6 40.6 0.6 15.8
P̂M 2.3 1.3 3.3 4.5 2.0 5.4 7.7 2.7 7.7 13.5 3.5 10.8 23.5 3.5 14.3 42.1 2.1 17.0
P̂R 2.6 1.6 3.7 5.1 2.6 6.0 8.6 3.6 8.4 14.6 4.6 11.6 25.0 5.0 15.0 43.7 3.7 17.2
P̂T 1.2 0.2 2.2 2.9 0.4 4.1 5.5 0.5 6.4 10.7 0.7 9.9 20.7 0.7 14.3 40.4 0.4 18.3
P̂B4 1.8 0.8 2.7 3.7 1.2 4.6 6.6 1.6 6.8 11.8 1.8 9.9 21.6 1.6 13.8 40.3 0.3 17.2
P̂Q4 1.0 0.0 2.1 2.5 0.0 4.0 5.0 0.0 6.3 10.1 0.1 9.8 20.1 0.1 14.3 39.8 -0.2 18.2

P̂B7 1.5 0.5 2.5 3.3 0.8 4.3 6.0 1.0 6.5 11.2 1.2 9.8 21.0 1.0 14.0 40.2 0.2 17.7
P̂Q7 1.0 0.0 2.1 2.5 0.0 3.9 5.0 0.0 6.3 10.0 0.0 9.8 20.0 0.0 14.5 40.1 0.1 18.6

P̂B10 1.4 0.4 2.4 3.1 0.6 4.2 5.8 0.8 6.4 10.9 0.9 9.8 20.8 0.8 14.1 40.1 0.1 18.0
P̂Q10 1.0 0.0 2.0 2.5 0.0 3.9 5.0 0.0 6.3 10.0 0.0 9.8 20.0 0.0 14.5 40.1 0.1 18.6
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Table 6: Bias and root mean square error of the proposed estimates of P at ν2 = 160
ν1

1% 2.5% 5% 10% 20% 40%
P̂ bias

√
M P̂ bias

√
M P̂ bias

√
M P̂ bias

√
M P̂ bias

√
M P̂ bias

√
M

2 P̂F 1.3 0.3 0.7 2.9 0.4 1.3 5.5 0.5 2.1 10.6 0.6 3.1 20.5 0.5 4.5 40.2 0.2 5.8
P̂χ2 1.0 0.0 0.6 2.5 0.0 1.2 5.0 0.0 1.9 9.8 -0.2 3.0 19.6 -0.4 4.5 39.3 -0.7 5.9

P̂D 1.1 0.1 0.6 2.7 0.2 1.2 5.2 0.2 2.0 10.2 0.2 3.1 20.2 0.2 4.5 40.0 0.0 5.9
P̂MD 1.1 0.1 0.6 2.7 0.2 1.2 5.2 0.2 2.0 10.2 0.2 3.1 20.2 0.2 4.6 40.0 0.0 5.9
P̂BY 1.3 0.3 0.7 2.9 0.4 1.3 5.4 0.4 2.0 10.5 0.5 3.0 20.4 0.4 4.5 40.2 0.2 5.8
P̂M 1.2 0.2 0.7 2.8 0.3 1.3 5.4 0.4 2.0 10.5 0.5 3.2 20.5 0.5 4.6 40.4 0.4 5.9
P̂R 1.2 0.2 0.7 2.9 0.4 1.3 5.5 0.5 2.1 10.7 0.7 3.2 20.8 0.8 4.6 40.7 0.7 5.9
P̂T 1.0 0.0 0.6 2.5 0.0 1.2 5.0 0.0 2.0 10.0 0.0 3.1 20.0 0.0 4.6 40.0 0.0 5.9
P̂B4 1.1 0.1 0.6 2.6 0.1 1.2 5.2 0.2 2.0 10.2 0.2 3.1 20.2 0.2 4.6 40.1 0.1 5.9
P̂Q4 1.0 0.0 0.6 2.5 0.0 1.2 5.0 0.0 2.0 10.0 0.0 3.1 20.0 0.0 4.6 40.0 0.0 5.9

P̂B7 1.1 0.1 0.6 2.6 0.1 1.2 5.1 0.1 2.0 10.1 0.1 3.1 20.1 0.1 4.6 40.1 0.1 5.9
P̂Q7 1.0 0.0 0.6 2.5 0.0 1.2 5.0 0.0 2.0 10.0 0.0 3.1 20.0 0.0 4.6 40.0 0.0 5.9

P̂B10 1.0 0.0 0.6 2.6 0.1 1.2 5.1 0.1 2.0 10.1 0.1 3.1 20.1 0.1 4.6 40.1 0.1 5.9
P̂Q10 1.0 0.0 0.6 2.5 0.0 1.2 5.0 0.0 2.0 10.0 0.0 3.1 20.0 0.0 4.6 40.0 0.0 5.9

4 P̂F 1.4 0.4 1.0 3.1 0.6 1.7 5.8 0.8 2.7 10.9 0.9 4.0 20.8 0.8 5.7 40.2 0.2 7.2
P̂χ2 1.0 0.0 0.7 2.4 -0.1 1.4 4.8 -0.2 2.3 9.5 -0.5 3.7 18.9 -1.1 5.6 38.2 -1.8 7.4

P̂D 1.2 0.2 0.8 2.8 0.3 1.6 5.4 0.4 2.5 10.4 0.4 3.9 20.3 0.3 5.8 40.0 0.0 7.3
P̂MD 1.2 0.2 0.8 2.8 0.3 1.6 5.4 0.4 2.5 10.4 0.4 3.9 20.3 0.3 5.7 40.0 0.0 7.2
P̂BY 1.4 0.4 1.0 3.1 0.6 1.6 5.7 0.7 2.6 10.8 0.8 3.9 20.6 0.6 5.8 40.2 0.2 7.1
P̂M 1.2 0.2 0.9 2.9 0.4 1.6 5.6 0.6 2.6 10.7 0.7 4.0 20.8 0.8 5.9 40.5 0.5 7.3
P̂R 1.3 0.3 0.9 3.0 0.5 1.7 5.8 0.8 2.7 11.0 1.0 4.1 21.2 1.2 5.9 40.9 0.9 7.3
P̂T 1.0 0.0 0.7 2.5 0.0 1.5 5.0 0.0 2.4 10.0 0.0 3.9 20.1 0.1 5.8 40.0 0.0 7.4
P̂B4 1.1 0.1 0.8 2.7 0.2 1.5 5.3 0.3 2.5 10.3 0.3 3.9 20.3 0.3 5.8 40.1 0.1 7.3
P̂Q4 1.0 0.0 0.7 2.5 0.0 1.5 5.0 0.0 2.4 10.0 0.0 3.9 20.0 0.0 5.8 40.0 0.0 7.4

P̂B7 1.1 0.1 0.8 2.6 0.1 1.5 5.2 0.2 2.5 10.2 0.2 3.9 20.2 0.2 5.8 40.1 0.1 7.4
P̂Q7 1.0 0.0 0.7 2.5 0.0 1.5 5.0 0.0 2.4 10.0 0.0 3.9 20.0 0.0 5.8 40.0 0.0 7.4

P̂B10 1.1 0.1 0.7 2.6 0.1 1.5 5.1 0.1 2.5 10.1 0.1 3.9 20.2 0.2 5.8 40.1 0.1 7.4
P̂Q10 1.0 0.0 0.7 2.5 0.0 1.5 5.0 0.0 2.4 10.0 0.0 3.9 20.0 0.0 5.8 40.0 0.0 7.4

8 P̂F 1.7 0.7 1.4 3.5 1.0 2.4 6.3 1.3 3.6 11.6 1.6 5.3 21.4 1.4 7.4 40.4 0.4 9.2
P̂χ2 0.9 -0.1 0.8 2.2 -0.3 1.6 4.3 -0.7 2.8 8.5 -1.5 4.6 17.3 -2.7 7.3 35.7 -4.3 10.1

P̂D 1.3 0.3 1.1 3.0 0.5 2.1 5.6 0.6 3.3 10.7 0.7 5.1 20.6 0.6 7.4 40.0 0.0 9.4
P̂MD 1.3 0.3 1.1 3.0 0.5 2.1 5.6 0.6 3.3 10.7 0.7 5.1 20.6 0.6 7.4 39.9 -0.1 9.3
P̂BY 1.6 0.6 1.4 3.5 1.0 2.4 6.4 1.4 3.6 11.5 1.5 5.3 21.9 1.9 7.4 40.5 0.5 9.6
P̂M 1.4 0.4 1.2 3.1 0.6 2.2 5.8 0.8 3.5 11.1 1.1 5.3 21.1 1.1 7.6 40.7 0.7 9.5
P̂R 1.5 0.5 1.3 3.3 0.8 2.3 6.1 1.1 3.6 11.5 1.5 5.5 21.6 1.6 7.7 41.3 1.3 9.5
P̂T 1.0 0.0 1.0 2.5 0.0 1.9 5.0 0.0 3.2 10.1 0.1 5.1 20.1 0.1 7.5 40.1 0.1 9.7
P̂B4 1.2 0.2 1.1 2.8 0.3 2.0 5.4 0.4 3.3 10.5 0.5 5.1 20.4 0.4 7.5 40.2 0.2 9.6
P̂Q4 1.0 0.0 0.9 2.5 0.0 1.9 5.0 0.0 3.2 10.0 0.0 5.1 20.0 0.0 7.5 40.0 0.0 9.7

P̂B7 1.1 0.1 1.0 2.7 0.2 2.0 5.3 0.3 3.2 10.3 0.3 5.1 20.3 0.3 7.5 40.1 0.1 9.6
P̂Q7 1.0 0.0 0.9 2.5 0.0 1.9 5.0 0.0 3.2 10.0 0.0 5.1 20.0 0.0 7.6 40.0 0.0 9.7

P̂B10 1.1 0.1 1.0 2.7 0.2 1.9 5.2 0.2 3.2 10.2 0.2 5.1 20.2 0.2 7.5 40.1 0.1 9.6
P̂Q10 1.0 0.0 0.9 2.5 0.0 1.9 5.0 0.0 3.2 10.0 0.0 5.1 20.0 0.0 7.6 40.0 0.0 9.7

16 P̂F 2.1 1.1 2.2 4.2 1.7 3.6 7.3 2.3 5.2 12.6 2.6 7.3 22.3 2.3 9.8 40.6 0.6 11.8
P̂χ2 0.6 -0.4 0.9 1.5 -1.0 1.9 3.1 -1.9 3.3 6.4 -3.6 5.9 13.5 -6.5 10.0 29.6 -10.4 15.4

P̂D 1.5 0.5 1.7 3.3 0.8 3.0 6.1 1.1 4.6 11.2 1.2 6.9 21.1 1.1 9.8 40.1 0.1 12.4
P̂MD 1.5 0.5 1.7 3.3 0.8 3.0 6.1 1.1 4.6 11.2 1.2 6.9 21.1 1.1 9.8 39.9 -0.1 12.1
P̂BY 2.1 1.1 2.2 4.2 1.7 3.5 7.5 2.5 5.4 12.5 2.5 7.3 21.8 1.8 9.6 40.3 0.3 11.9
P̂M 1.6 0.6 1.8 3.5 1.0 3.2 6.4 1.4 4.9 11.7 1.7 7.2 21.8 1.8 10.1 41.1 1.1 12.5
P̂R 1.7 0.7 1.9 3.8 1.3 3.4 6.8 1.8 5.1 12.3 2.3 7.5 22.5 2.5 10.3 41.8 1.8 12.5
P̂T 1.1 0.1 1.3 2.6 0.1 2.6 5.2 0.2 4.3 10.2 0.2 6.8 20.2 0.2 10.1 40.1 0.1 13.0
P̂B4 1.4 0.4 1.5 3.1 0.6 2.8 5.8 0.8 4.5 10.8 0.8 6.8 20.7 0.7 9.9 40.2 0.2 12.7
P̂Q4 1.0 0.0 1.3 2.5 0.0 2.6 5.0 0.0 4.3 10.0 0.0 6.8 20.0 0.0 10.1 40.0 0.0 13.0

P̂B7 1.2 0.2 1.4 2.9 0.4 2.7 5.5 0.5 4.4 10.5 0.5 6.8 20.4 0.4 10.0 40.1 0.1 12.8
P̂Q7 1.0 0.0 1.3 2.5 0.0 2.6 5.0 0.0 4.2 10.0 0.0 6.8 20.0 0.0 10.1 40.0 0.0 13.1

P̂B10 1.2 0.2 1.4 2.8 0.3 2.7 5.4 0.4 4.3 10.4 0.4 6.8 20.3 0.3 10.0 40.0 0.0 12.9
P̂Q10 1.0 0.0 1.3 2.5 0.0 2.6 5.0 0.0 4.2 10.0 0.0 6.8 20.0 0.0 10.1 40.0 0.0 13.1
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5 Feasability of estimates and absolute error

5.1 Ranges of estimates

The simulations in Section 4 show that the estimators based on polynomial approximations

performed well, in that they had the minimum bias among all other reported estimators. However,

this does not mean that the estimates they produce are always sensible. Specifically, when λ0

is very small they can give estimates of the proportion that are greater than 100%, and when

λ0 is very big they can give estimates that are less than zero. This problem comes to light by

studying the behavior of the proposed estimators at different values in the domain of λ0.

For example, at ν1 = 4 and ν2 = 24, Figure 6 shows that the twelve estimators all have similar

patterns for 0 < λ0 < 30. But a closer look at the part of the domain where 0 < λ0 < 0.5 (Figure

7) reveals that P̂B4, P̂B7, P̂Q4 and P̂Q7 are not monotonically decreasing with λ0 and they exceed

100% at some values of λ0. At the same degrees of freedom, another problem appears in Figure

8, where both P̂Q4 and P̂Q7 are below zero for some values of 12 < λ0 < 30.

Similar problems appear at large sample sizes as well. For example, at ν1 = 4 and ν2 = 80,

although Figure 9 shows that the estimators are nearly identical to each other over the interval

0 < λ0 < 22, Figure 10 shows that P̂Q4, P̂Q7 and P̂Q10 are identical and they all exceeds 100%

for some values of 0 < λ0 < 0.2; Figure 11 shows that P̂Q4 is slightly below zero for some values

of 22 < λ0 < 32.

The problem does not arise with other estimators - estimates are always in the range 0% -

100% for P̂F , P̂χ2, P̂D, P̂MD, P̂BY , P̂M , P̂R and P̂T . However, as Figure 7 shows, the estimate

of P approaches 100% as λ0 approaches 0. This is clearly unrealistic as the case’s value x∗ will

not equal the population mean µµµ, even if x∗ equals the sample mean x̄. As in Section 3.1.2, a

pragmatic approach is to treat the case’s profile as that of a randomly chosen control when the

case’s profile seems nearer to µµµ than would be expected of a control’s profile.
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Figure 6: Values of different estimators at 0 < λ0 < 30 for ν1 = 4 and ν2 = 20.

Figure 7: Values of different estimators at 0 < λ0 < 0.5 for ν1 = 4 and ν2 = 20.
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Figure 8: Values of different estimators at 12 < λ0 < 30 for ν1 = 4 and ν2 = 20.

Figure 9: Values of different estimators at 0 < λ0 < 22 for ν1 = 4 and ν2 = 80.
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Figure 10: Values of different estimators at 0 < λ0 < 0.2 for ν1 = 4 and ν2 = 80.

Figure 11: Values of different estimators at 22 < λ0 < 32 for ν1 = 4 and ν2 = 80.
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5.2 Performances as measured by absolute error

In Section 4, mean square error and average error (bias) were used to evaluate the performance

of the various estimators considered in this paper. Alternative evaluation criteria include aver-

age absolute error (AAE) and median error. Here, we briefly examine the performance of our

estimators under these criteria. In theory, the median estimator P̂D should give a median error

of 0 and have a lower AAE than other estimators whose median error is small. Its closely related

estimator, P̂MD, should also perform well.

Results for ν1 = 8 and ν2 = 40 are presented in Table 7. It can be seen that the median error

in estimating P is 0.0 for both P̂D and P̂MD for each of the tabulated values of P . In contrast,

the median error of every other estimator is never 0.0 except for P̂B10 when P = 40%; otherwise

the median error of the other estimators is typically quite marked.

Table 7: Median error (ME) and average absolute error (AAE) of the proposed estimates of P

at ν1 = 8 and ν2 = 40.
P =1% P =2.5% P =5% P =40%

P̂ ME AAE P̂ ME AAE P̂ ME AAE P̂ ME AAE
P̂F 2.6 1.6 3.0 4.8 2.3 4.6 7.9 2.9 6.2 41.1 1.1 13.3
P̂χ2 0.2 -0.8 0.9 0.6 -1.9 2.1 1.4 -3.6 3.7 24.0 -16.0 17.8

P̂D 1.0 0.0 1.8 2.5 0.0 3.3 5.0 0.0 5.1 40.0 0.0 14.5
P̂MD 1.0 0.0 1.8 2.5 0.0 3.3 5.0 0.0 5.1 40.0 0.0 13.7
P̂BY 2.4 1.4 2.8 4.7 2.2 4.8 7.9 2.9 6.5 41.1 1.1 13.2
P̂M 1.3 0.3 2.2 3.1 0.6 3.9 6.0 1.0 5.8 43.0 3.0 14.9
P̂R 1.8 0.8 2.7 3.9 1.4 4.6 7.3 2.3 6.7 45.6 5.6 15.1
P̂T 0.3 -0.7 1.4 1.2 -1.3 2.9 3.0 -2.0 4.9 40.4 0.4 16.1
P̂B4 0.9 -0.1 1.7 2.2 -0.3 3.2 4.6 -0.4 5.0 40.4 0.4 15.1
P̂Q4 0.1 -0.9 1.3 0.8 -1.7 2.9 2.5 -2.5 4.8 39.7 -0.3 16.2

P̂B7 0.6 -0.4 1.5 1.7 -0.8 3.0 3.9 -1.1 4.9 40.1 0.1 15.5
P̂Q7 0.0 -1.0 1.3 0.6 -1.9 2.8 2.2 -2.8 4.9 39.9 -0.1 16.4

P̂B10 0.5 -0.5 1.5 1.4 -1.1 2.9 3.5 -1.5 4.9 40.0 0.0 15.8
P̂Q10 0.1 -0.9 1.3 0.7 -1.8 2.8 2.2 -2.8 4.8 39.9 -0.1 16.4

A fuller examination of the median errors given by P̂D and P̂MD is provided in Table 8, where

results are given for these estimators for all the combinations of ν1 and ν2 that were considered

in Tables 2 - 6. The two estimators give identical median error for every combination and that
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error is small in every case. Hence, if we want an estimator that has very small median error,

then both P̂D and P̂MD can fill that role. The average absolute error is marginally better with

the P̂MD estimator, but the differences are very slight. However, P̂MD is the preferable estimator

because it will not give unrealistic estimates of P , while P̂D will sometimes estimate P as 100%

when that is not a credible estimate. Consequently, if a point estimator of P is required, one

reasonable choice is to give P̂MD as the estimator and say that it gives small median error without

making any claim about its bias (average error).

Table 8: Median error (ME) and average absolute error (AAE) of the proposed median estimates

P̂D and P̂MD of P .
ν2 ν1

P =1% P =2.5% P =5% P =40%
P̂ ME AAE P̂ ME AAE P̂ ME AAE P̂ ME AAE

10 2 P̂D 1.0 0.0 2.5 2.5 0.0 4.2 5.0 0.0 6.3 39.9 -0.1 17.1
P̂MD 1.0 0.0 2.5 2.5 0.0 4.2 5.0 0.0 6.3 39.9 -0.1 16.1

4 P̂D 1.0 0.0 3.6 2.5 0.0 5.8 5.0 0.0 8.3 40.0 0.0 20.2
P̂MD 1.0 0.0 3.6 2.5 0.0 5.8 5.0 0.0 8.2 40.0 0.0 17.8

20 2 P̂D 1.0 0.0 1.6 2.5 0.0 2.8 5.0 0.0 4.4 40.0 0.0 12.6
P̂MD 1.0 0.0 1.6 2.5 0.0 2.8 5.0 0.0 4.4 40.0 0.0 12.3

4 P̂D 1.0 0.0 2.1 2.5 0.0 3.7 5.0 0.0 5.7 40.0 0.0 15.3
P̂MD 1.0 0.0 2.1 2.5 0.0 3.7 5.0 0.0 5.7 40.0 0.0 14.3

8 P̂D 1.0 0.0 3.1 2.5 0.0 5.2 4.9 -0.1 7.6 39.9 -0.1 19.1
P̂MD 1.0 0.0 3.1 2.5 0.0 5.2 4.9 -0.1 7.5 39.9 -0.1 17.1

40 2 P̂D 1.0 0.0 1.0 2.5 0.0 1.9 5.0 0.0 3.1 40.0 0.0 9.2
P̂MD 1.0 0.0 1.0 2.5 0.0 1.9 5.0 0.0 3.1 40.0 0.0 9.1

4 P̂D 1.0 0.0 1.3 2.5 0.0 2.5 5.0 0.0 3.9 40.0 0.0 11.3
P̂MD 1.0 0.0 1.3 2.5 0.0 2.5 5.0 0.0 3.9 40.0 0.0 10.9

8 P̂D 1.0 0.0 1.8 2.5 0.0 3.4 5.0 0.0 5.2 40.0 0.0 14.3
P̂MD 1.0 0.0 1.8 2.5 0.0 3.4 5.0 0.0 5.2 40.0 0.0 13.5

16 P̂D 1.0 0.0 2.8 2.5 0.0 4.8 5.0 0.0 7.1 39.8 -0.2 18.4
P̂MD 1.0 0.0 2.8 2.5 0.0 4.8 5.0 0.0 7.1 39.8 -0.2 16.6

80 2 P̂D 1.0 0.0 0.7 2.5 0.0 1.3 5.0 0.0 2.2 40.1 0.1 6.6
P̂MD 1.0 0.0 0.7 2.5 0.0 1.3 5.0 0.0 2.2 40.1 0.1 6.6

4 P̂D 1.0 0.0 0.9 2.5 0.0 1.7 5.0 0.0 2.8 40.0 0.0 8.2
P̂MD 1.0 0.0 0.9 2.5 0.0 1.7 5.0 0.0 2.8 40.0 0.0 8.1

8 P̂D 1.0 0.0 1.2 2.5 0.0 2.2 5.0 0.0 3.6 40.0 0.0 10.6
P̂MD 1.0 0.0 1.2 2.5 0.0 2.2 5.0 0.0 3.6 40.0 0.0 10.2

16 P̂D 1.0 0.0 1.7 2.5 0.0 3.1 5.0 0.0 4.8 40.2 0.2 13.8
P̂MD 1.0 0.0 1.7 2.5 0.0 3.1 5.0 0.0 4.8 40.2 0.2 13.1

160 2 P̂D 1.0 0.0 0.5 2.5 0.0 0.9 5.0 0.0 1.5 40.0 0.0 4.7
P̂MD 1.0 0.0 0.5 2.5 0.0 0.9 5.0 0.0 1.5 40.0 0.0 4.7

4 P̂D 1.0 0.0 0.6 2.5 0.0 1.2 5.0 0.0 1.9 40.0 0.0 5.8
P̂MD 1.0 0.0 0.6 2.5 0.0 1.2 5.0 0.0 1.9 40.0 0.0 5.8

8 P̂D 1.0 0.0 0.8 2.5 0.0 1.5 5.0 0.0 2.5 40.0 0.0 7.6
P̂MD 1.0 0.0 0.8 2.5 0.0 1.5 5.0 0.0 2.5 40.0 0.0 7.5

16 P̂D 1.0 0.0 1.0 2.5 0.0 2.0 5.0 0.0 3.3 40.1 0.1 10.1
P̂MD 1.0 0.0 1.0 2.5 0.0 2.0 5.0 0.0 3.3 40.1 0.1 9.8
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6 Concluding Comments

The task that motivated this paper seemed straightforward: find a good point estimator of the

abnormality of a Mahalanobis index. The answer is less straightforward, as the best choice

of estimator will depend on the purpose for which the estimator is required. The following

summarizes our findings.

1. The most common criteria used to choose an estimator are bias and mean square error; the

minimum variance unbiased estimator is often the preferred estimator if such an estimator

can be found. Under these criteria the best estimators are those based on a quadrature

polynomial approximation, P̂Q4, P̂Q7 and P̂Q10, provided occasional negative estimates are

not a problem. (The negative estimates would presumably be set to 0.) Only P̂Q4 can be

used for ν2 = 10; P̂Q7 is best for ν2 = 20; P̂Q10 is marginally the best (P̂Q7 is almost as

good) for ν2 = 40; they are all equally good for ν2 ≥ 80.

2. If mean square error is to be minimized and bias is unimportant, then P̂χ2 is the best

estimator, but it displays substantial bias even when ν2 is large.

3. Sometimes, an estimate of P is to be used as an input into further analysis. Commonly

though, an estimate of P is to be communicated to others (perhaps in a journal paper or a

technical report) and then a good descriptive statistic is required. In that context, the best

estimator would seem to be the modified median estimator, P̂MD. It should be referred to

as the median estimator as that is accurate: it is designed to give low median bias rather

than low average bias and, indeed, its median bias is very low. It is preferable to the median

estimate (P̂D) because it always gives sensible estimates while P̂D sometimes gives estimates

that are unrealistically small when judged by common sense. For the same reason, it is to
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be preferred over the quadrature polynomial approximations when the estimate of P is to

be communicated to others.

Acknowledgement

The work reported here was funded by a grant from the Medical Research Council, UK.

References

Babu, G. J., Canty, A. J., and Chaubey, Y. P. (2002). Application of Bernstein polynomials for

smooth estimation of a distribution and density function. Journal of Statistical Planning and

Inference, 105, 377–392.

Bain, L. J. (1969). Moments of a noncentral t and noncentral F -distribution. The American

Statistician, 23, 33–34.

Chang, I.-S., Hsiung, C. A., Wu, Y.-J., and Yang, C.-C. (2005). Bayesian survival analysis using

Bernstein polynomials. Scandinavian Journal of Statistics , 32, 447–466.

Chow, M. S. (1987). A complete class theorem for estimating a noncentrality parameter. Annals

of Statistics , 15, 800–804.

Clark, J. D., Dunn, J. E., and Smith, K. G. (1993). A multivariate model of female black bear

habitat use for a geographic information system. The Journal of Wildlife Management , 57,

519–526.

Crawford, J. R., Garthwaite, P. H., Elfadaly, F. G., Huizenga, H. M., and Schmand, B. (2014).

Point and interval estimates of the overall abnormality of a case’s profile of test scores (with

decomposition of overall effect). In preparation.

DasGupta, S. (1993). The evolution of the d2-statistic of mahalanobis. Sankhyā, Series A, 55,
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