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Abstract
We reconsider the derivation of Blest's (2003) skewness adjusted version of the classi-

cal moment-based coe�cient of kurtosis and propose an adaptation of it which generally
eliminates the e�ects of asymmetry more successfully. Lower bounds are provided for the
two skewness adjusted kurtosis measures as functions of the classical coe�cient of skewness.
The results from a Monte Carlo experiment designed to investigate the sampling properties
of numerous moment-based estimators of the two skewness adjusted kurtosis measures are
used to identify those estimators with lowest mean squared error for small to medium sized
samples drawn from distributions with varying levels of asymmetry and tailweight.
Keywords: Asymmetry, Estimation, Lower bounds, Moment-based measures, Sinh-arcsinh
transformation

1. Introduction
The classical fourth moment-based coe�cient α4 = µ4/σ

4, where µk = E[(X − µ)k],
σ2 = µ2, µ = E(X) and X denotes a random variable (Thiele, 1889; Pearson, 1905), remains
the best known and most widely applied measure of kurtosis. This is in spite of the fact
that the coe�cient does not exist if the fourth moment does not exist, a major limitation
on its use with heavy-tailed distributions. Moreover, even for symmetric distributions, its
interpretation can be far from obvious. For asymmetric distributions, it has long been
known (Pearson, 1916) that α4 ≥ α2

3 + 1, where α3 = µ3/σ
3 is the classical moment-

based coe�cient of skewness. Thus, higher skewness (as measured by α3) is inevitably
accompanied by higher kurtosis (as measured by α4). These unappealing features of α4

have stimulated considerable debate within the literature regarding exactly what `kurtosis'
is, what it measures (or should measure), and how best to measure it. An excellent review of
the extensive related literature is provided by Balanda and MacGillivray (1988); measures of
kurtosis for use with asymmetric distributions are considered by Balanda and MacGillivray
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(1990). Many of the alternative kurtosis measures that have been proposed are based on
quantiles, which exist and are unique if the distribution function is continuous and strictly
monotone.

Flying somewhat in the face of these developments, and ignoring its potential non-
existence, Blest (2003) advocated a skewness adjusted version of α4. His proposal arose
from consideration of what he termed the meson; that central value, ξ, about which the
fourth moment of a distribution is minimum. Clearly, ξ is also that point about which the
third moment is zero. Setting ξ = µ + kσ,

k =

(√
1 + 1

4
α2

3 + 1
2
α3

)1/3

−
(√

1 + 1
4
α2

3 − 1
2
α3

)1/3

, (1)

and thus
µ4 = µ∗4 + 6σ4k2 + 3σ4k4,

where µ∗4 = E[(X − ξ)4] denotes the minimum fourth moment. Given this relation, Blest
proposed

α∗4 = µ∗4/σ
4 = α4 − 3k2(2 + k2), (2)

as a measure of kurtosis adjusted for skewness, his clear intention being to try to eliminate
the e�ects of skewness on α4 noted earlier. Jones et al. (2011) note that k can be represented
in terms of the sinh-arcsinh function as

k = 2 sinh(1
3
sinh−1(1

2
α3)) = 2S0, 1

3
(1

2
α3),

using the notation Sε,δ(x) = sinh(δ sinh−1(x)− ε) of Jones and Pewsey (2009).
In Section 2, we reconsider the de�nition of α∗4 and propose an adaptation of it, α†4. In

the same section, we show that neither α∗4 nor α†4 are kurtosis measures that are completely
una�ected by skewness. We also provide lower bounds for the two skewness adjusted kurtosis
measures. In Section 3 we consider the problem of how α∗4 and α†4 might be estimated, and
present results of an extensive simulation study designed to explore the performance of
various estimators based on popular estimators of the skewness measure α3 and the kurtosis
measure α4. The paper ends with Section 4 where concluding remarks are drawn.

2. An alternative measure: comparative performance and bounds
2.1. An alternative skewness adjusted measure

It is easy to show that µ∗2 = E[(X − ξ)2] = σ2(1 + k2). This result raises the question as
to why, in the de�nition of α∗4 in Equation (2), µ∗4 is divided by σ4 and not σ4(1 + k2)2. We
therefore propose the alternative skewness adjusted coe�cient of kurtosis

α†4 =
µ∗4

(µ∗2)2
=

α∗4
(1 + k2)2

=
α4

(1 + k2)2
− 3k2(2 + k2)

(1 + k2)2
. (3)

Like α4 and α∗4, α†4 does not exist if the fourth moment of X does not exist. As is the case
for α∗4, the new measure α†4 is a function of α4 and a sinh-arcsinh transformation of the
coe�cient of skewness, α3.
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Figure 1: Kurtosis measures α4/(1+α4) (solid), α∗4/(1+α∗4) (dotted) and α†4/(1+α†4) (dashed), as functions
of ρ = α/(1 + α), α > 0, for the skew-normal distribution with density (4).

2.2. Performance of the skewness adjusted kurtosis measures
Although α∗4 and α†4 are generally less a�ected by skewness than α4 is, they are not,

however, skewness invariant measures. This fact is illustrated in Figures 1 and 2. Figure 1
represents all three measures for the popular skew-normal class of distributions of Azzalini
(1985) with density

fα(x) = 2φ(x)Φ(αx), −∞ < x, α < ∞, (4)
where φ and Φ are the density and distribution function, respectively, of the standard
normal distribution. The parameter α is a shape parameter which a�ects both the skewness
and kurtosis. The skew-normal distribution has shapes ranging from that of the normal
distribution (α = 0) to those of half-normal distributions (α = ±∞). In Figure 1, both the
measures and the shape parameter, constrained without loss of generality to be positive,
have been transformed to put them on to (0, 1). (When ρ = α/(1 + α) = 0, each kurtosis
measure is 3/(1 + 3) = 0.75, the kurtosis value of the normal distribution.) If the e�ects of
asymmetry were eliminated completely for all members of the class, we would expect to see
lines that were parallel with the horizontal axis in such a plot. Clearly they are not, but α†4
appears to do a better job than α∗4 at removing the e�ects of skewness for all but the most
asymmetric of cases, in the neighbourhood of the half-normal (α = ∞, ρ = 1) distribution.

Panels (a)�(c) of Figure 2 present contour plots of α4/(1+α4), α∗4/(1+α∗4) and α†4/(1+α†4),
as functions of ρ1 = ε/(1 + ε), ε ≥ 0, and λ1 = δ/(1 + δ), for the sinh-arcsinhed normal (or
SAS-normal, for short) family of distributions of Jones and Pewsey (2009) with density

fε,δ(x) = {2π(1 + x2)}−1/2δCε,δ(x) exp{−1
2
S2

ε,δ(x)}, −∞ < x, ε < ∞, δ > 0, (5)
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Figure 2: Contour plots of the three kurtosis measures α4/(1 + α4) (�rst column), α∗4/(1 + α∗4) (second
column) and α†4/(1 + α†4) (third column). Panels (a)�(c) correspond to the SAS-normal distribution with
density (5), as functions of ρ1 = ε/(1 + ε), ε ≥ 0, and λ1 = δ/(1 + δ). Panels (d)�(f) are their analogues for
the SAS-t distribution with density (6), as functions of ρ1 ≥ 0 and λ2 = ν/(1+ν). Panels (g)�(i) correspond
to the skew-t distribution with density (7), as functions of ρ2 = α/(1 + α), α ≥ 0, and λ2.

4



where Cε,δ(x) = cosh{δ sinh−1(x)− ε} = {1 + S2
ε,δ(x)}1/2. Here, δ is a tailweight parameter,

while ε regulates the skewness of the distribution. The SAS-normal distribution has tails
ranging from the extremely heavy (δ ' 0), through those of the normal distribution (δ = 1)
to the extremely light (δ → ∞). Its densities are symmetric if ε = 0, and increasingly
positively (negatively) skewed as ε →∞ (ε → −∞). In the contour plots of panels (a)�(c),
we would expect to see contour lines that were parallel with the horizontal axis if the e�ects
of asymmetry were eliminated completely. Here it is debatable which of the two forms of
correction does best at removing the e�ects of asymmetry, e�ects that are not especially
strong to start with in this case. Certainly for moderate levels of asymmetry and perhaps
for high levels of asymmetry, α†4 performs best. However, for distributions with heavy tails
(δ < 1, λ1 < 1/2) and low levels of asymmetry (ε ' 0, ρ1 ' 0), α∗4 performs better.

Panels (d)�(f) of Figure 2 portray contour plots analogous to those in panels (a)�(c),
now as functions of ρ1 = ε/(1 + ε), ε ≥ 0, and λ2 = ν/(1 + ν), for the sinh-arcsinhed t
distribution of Rosco et al. (2011) with density

fε,ν(x) =
KνCε,1(x)√

1 + x2(1 + ν−1S2
ε,1(x))(ν+1)/2

, −∞ < x, ε < ∞, ν > 0, (6)

where Kν = Γ((ν + 1)/2)/(
√

νπΓ(ν/2)). As for the SAS-normal distribution, ε is the
skewness regulating parameter. However, ν replaces δ as the tailweight parameter. The
SAS-t distribution has tails ranging from the extremely heavy (ν ' 0), through those of
the Cauchy distribution (ν = 1), all the way to those of the normal distribution (ν → ∞).
However, the moment-based kurtosis measures are only de�ned for ν > 4, or λ2 > 0.8. For
this family of distributions, α†4 can probably be judged to generally perform best.

Finally, panels (g)�(i) of Figure 2 provide analogous contour plots, now as functions of
ρ2 = α/(1 + α), α ≥ 0, and λ2 = ν/(1 + ν), for the skew-t distribution of Azzalini and
Capitanio (2003) with density

fα,ν(x) = 2tν(x)Tν+1

{
αx

(
ν + 1

x2 + ν

)1/2
}

, −∞ < x, α < ∞, ν > 0, (7)

where tν and Tν denote the density and distribution function, respectively, of the t-distribution
with ν degrees of freedom. Here, α is a skewness parameter (as for the skew-normal class)
and ν is a tailweight parameter (as for the SAS-t family). Again, the moment-based kurtosis
measures are only de�ned for ν > 4, or λ2 > 0.8. For this family, α†4 generally performs
best, particularly for distributions with low to moderate levels of skewness.

Thus, although the ability of the kurtosis measures α∗4 and α†4 to remove the in�uence
of skewness clearly depends on the family of distributions under consideration and the level
of skewness, our �ndings for the four �exible families of unimodal distributions considered
here indicate that α†4 generally outperforms α∗4, if not by a huge amount. It is noteworthy
that, in the examples of Figure 2, α∗4 actually makes little di�erence compared with α4; on
the other hand, α†4 makes more di�erence, although sometimes it seems to adjust α4 a little
bit too much.
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Figure 3: Lower bounds for α4 (solid), α∗4 (dotted) and α†4 (dashed) as functions of the skewness measure
α3.

2.3. Lower bounds
As stated in the Introduction, the standard kurtosis measure α4 is bounded below by

α2
3 + 1. Here we consider lower bounds for the two skewness adjusted measures, α∗4 and α†4.
The key to obtaining a lower bound for α∗4 is the following simple bound for the `sym-

metric' (actually, odd) sinh-arcsinh function S0,δ(x) = sinh(δ sinh−1(x)) when 0 ≤ δ ≤ 1
and x ≥ 0: S0,δ(x) ≤ δx. This follows because S0,δ(0) = 0, S ′0,δ(0) = δ and, with just a
little e�ort, S0,δ(x) with 0 ≤ δ ≤ 1 can be shown to be concave on x ≥ 0. It follows that
k = 2S0, 1

3
(α3/2) ≤ α3/3 for α3 ≥ 0 and hence, since k is an odd function of α3,

k2 ≤ 1
9
α2

3.

(Blest (2003) notes essentially that k ≈ α3/3 which is indeed a good approximation for small
α3.) Finally,

α∗4 = α4 − 3k2(2 + k2) ≥ α2
3 + 1− 1

3
α2

3

(
2 + 1

9
α2

3

)
= 1 + 1

3
α2

3 − 1
27

α4
3.

The same bound divided by (1 + 1
9
α2

3)
2 clearly holds for α†4 = α∗4/(1 + k2)2. That is,

α†4 ≥
1 + 1

3
α2

3 − 1
27

α4
3

(1 + 1
9
α2

3)
2

= 3

(
27 + 9α2

3 − α4
3

81 + 18α2
3 + α4

3

)
.

Figure 3 portrays the lower bounds for α4, α∗4 and α† as functions of α3. All three lower
bounds are clearly identical, and equal to one, if the underlying distribution is symmetric
(α3 = 0). The bounds for α∗4 and α†4 are not dissimilar for α3 values within the plotted
range. However, α∗4 → −∞ as |α3| → ∞, while α†4 → −3 as |α3| → ∞. The lower bounds
on the skewness-adjusted kurtosis measures are much less stringent than the classical lower
bound on the value of α4.
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3. Estimation
When working with data, it will of course be of interest to estimate the values of α∗4 and

α†4, and this is the problem we consider here. Speci�cally, we focus on estimators of them
based on popular estimators of α3 and α4. We introduce the underlying estimators of α3

and α4 in Section 3.1, and present the results from a simulation study designed to explore
the performance of twelve estimators of each of α∗4 and α†4 in Section 3.2.

3.1. Estimators of α3 and α4

Let X1, ..., Xn denote a random sample from some unspeci�ed distribution, and X̄ =
n−1

∑n
i=1 Xi, Mk = n−1

∑n
i=1(Xi−X̄)k, α̃3 = M3/M

3/2
2 and α̃4 = g2+3 = M4/M

2
2 denote the

sample mean, the kth moment about the mean, and the classical sample moment estimators
of α3 and α4, respectively. For data from a normal distribution, α̃3 is unbiased for α3,
whereas α̃4 is only asymptotically unbiased for α4. For data from other distributions, the
two estimators are asymptotically unbiased (see, for example, Ðori¢ et al. 2009). α̃3 and α̃4

are the estimators of α3 and α4 implemented in the statistical software package STATA and
the moments package of R.

Fisher (1930) proposed

α̃′3 = α̃3

√
n(n− 1)

n− 2
and G2 =

n− 1

(n− 2)(n− 3)
{(n + 1)(α̃4 − 3) + 6}

as estimators of α3 and α4 − 3. We will denote the corresponding estimator of α4 by
α̃′4 = G2 + 3. For samples drawn from the normal distribution, α̃′3 and α̃′4 are unbiased.
These are the estimators of α3 and α4 implemented within the packages SAS, SPSS and
STATISTICA.

Making use of the unbiased estimators M ′
2 = nM2/(n− 1), M ′

3 = n2M3/{(n− 1)(n− 2)}
and

M ′
4 =

n(n2 − 2n + 3)

(n− 1)(n− 2)(n− 3)
M4 − 3n(2n− 3)

(n− 1)(n− 2)(n− 3)
M2

2 ,

of their population central moment counterparts, Cramér (1946) considered the estimators

M ′
3

(M ′
2)

3/2
= α̃′3 and α̃′′4 =

M ′
4

(M ′
2)

2
. (8)

As Ðori¢ et al. (2009) explain, α̃′′4 is biased with the same bias as α̃4 when the data are
normal. More generally, α̃′3 and α̃′′4 are biased but with smaller biases than α̃3 and α̃4.

The estimators of α3 and α4 − 3 implemented in MINITAB, BMDP and the timeDate
package of R are

α̃′′3 =
M3

(M ′
2)

3/2
= α̃3

(
n− 1

n

)3/2

and b2 =
M4

(M ′
2)

2
− 3 = α̃4

(
n− 1

n

)2

− 3.

We will use α̃′′′4 = b2 + 3 to denote the corresponding estimator of α4. Like α̃′3, α̃′′3 is a
multiple of α̃3 and thus is also an unbiased estimator of α3 = 0 when the data are normal.
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Joanes and Gill (1998) present results for the variances of the estimators α̃3, α̃′3 and α̃′′3
and for the biases and variances of the estimators g2, G2 and b2 for samples drawn from the
normal distribution. They also summarise Monte Carlo based results for the bias and mean
squared error (MSE) of the same estimators for data drawn from chi-squared distributions
with varying levels of asymmetry, speci�cally, with 1, 10 and 50 degrees of freedom. They
found all six estimators to be negatively biased for samples drawn from these positively
skewed distributions, the bias decreasing with increasing sample size, n, and number of
degrees of freedom. Based on their results, it can be concluded that α̃′′3 and α̃′′′4 have the
smallest variances for samples drawn from the normal distribution, while α̃′′3 and α̃4 have
the smallest MSEs in the normal case. On the other hand, α̃′3 and α̃′4, for n < 100, and α̃4,
for 100 ≤ n ≤ 200, have the smallest MSEs for samples from a very skewed distribution like
the chi-squared distribution with 1 degree of freedom.

3.2. Simulation study
There are twelve possible combinations of the three estimators α̃3, α̃′3 and α̃′′3 of α3 and

the four estimators α̃4, α̃′4, α̃′′4 and α̃′′′4 of α4 which one might contemplate substituting for
α3 and α4 in (1)�(3) so as to obtain estimators of k, α∗4 and α†4. We identify these twelve
combinations using the numbers: 1 for (α̃3, α̃4), 2 for (α̃′3, α̃4), 3 for (α̃′′3, α̃4), 4 for (α̃3, α̃

′
4),

5 for (α̃′3, α̃
′
4), 6 for (α̃′′3, α̃

′
4), 7 for (α̃3, α̃

′′
4), 8 for (α̃′3, α̃

′′
4), 9 for (α̃′′3, α̃

′′
4), 10 for (α̃3, α̃

′′′
4 ), 11

for (α̃′3, α̃
′′′
4 ), 12 for (α̃′′3, α̃

′′′
4 ). In order to study the small-sample bias and MSE properties

of the twelve resulting estimators of α∗4 and of α†4, we carried out a simulation study.
In our study we generated samples of size n = 10, 20, 50, 100 and 200 from the SAS-

normal distribution with density (5), the SAS-t distribution with density (6), and Azzalini
and Capitanio's skew-t distribution with density (7). We chose these three models because
of their unimodal �exibility. For each of the three families of distributions we considered
values of their skewness parameters (ε for the �rst two, and α for the last) of 0, 0.5, 1 and 10.
For the two asymmetric t distributions we explored values of their tailweight parameter, ν,
of 4.1, 10 and ∞. (The ν = ∞ cases correspond to the SAS-normal distribution with δ = 1
and the skew-normal distribution, respectively.) And for the SAS-normal we investigated
values for its tailweight parameter, δ, of 0.2, 0.5, 2, 5 and 20. These parameter combinations
correspond to ranges of α4 of: (2.14, 1154.60) for the SAS-normal; (3, 266.18) for the SAS-t;
(3, 230.70) for the skew-t. For each distribution, sample size, asymmetry parameter value
and tailweight parameter value combination we simulated 10, 000 samples, and from these
samples we calculated the sample bias and MSE of each of the twelve estimators of α∗4 and
each of the twelve estimators of α†4.

Consistent with the results quoted above from Joanes and Gill (1998) and there being
relatively little di�erence between α4 and α∗4, the biases of all the estimates of α∗4 were found
to be negative, the bias decreasing (in absolute value) with increasing sample size and as the
tailweight tends to that of the normal distribution and, generally, as the skewness tends to 0
(i.e. to symmetry). With regard to the MSE of the twelve estimators of α∗4, for distributions
with normal or heavier tails we observed patterns which are well represented by panels (a)
and (c) of Figure 4. For distributions with lighter than normal tails, patterns like those
displayed in panel (e) of the same �gure were obtained. As panels (a), (c) and (e) of Figure

8



4 illustrate, there is little or no di�erence between the MSEs of the twelve estimators of α∗4
for sample sizes of 100 or more.

The results obtained for the estimators of α†4 were very similar to those for the estimators
of α∗4, except that their biases and MSEs were generally found to be somewhat larger. The
di�erence between their MSEs can be appreciated by comparing the panels corresponding to
the estimates of α∗4 in the �rst column of Figure 4 with their counterparts for the estimates
of α†4 in its second column.

For samples drawn from distributions with heavier than normal tails, for example, Figure
4(a),(b), the estimators of α∗4 and α†4 which generally had lowest MSEs were those based on
the combinations 9 (α̃′′3, α̃

′′
4), 7 (α̃3, α̃

′′
4) and 8 (α̃′3, α̃

′′
4) (ordered according to increasing MSE).

The estimator α̃′′4 which appears in all three of these combinations was not considered by
Joanes and Gill (1998) as a potential estimator of α4. For samples from distributions with
normal-like tails, for example, Figure 4(c),(d), the estimators with lowest MSEs generally
corresponded to the combinations 3 (α̃′′3, α̃4) and 9 (α̃′′3, α̃

′′
4). Both of these combinations

involve α̃′′3 which was found by Joanes and Gill (1998) to be the estimator of α3 with
smallest MSE for data drawn from the normal distribution. Finally, for samples drawn from
distributions with lighter than normal tails, for example, Figure 4(e),(f), the estimators based
on the combinations 1 (α̃3, α̃4), 2 (α̃′3, α̃4) and 3 (α̃′′3, α̃4) were found generally to be those with
lowest MSEs. All three of these combinations contain the raw moment estimator α̃4 of α4.
Here a comparison with the results reported in Joanes and Gill (1998) is impossible because
they did not investigate the performance of the di�erent estimators for data simulated from
light tailed distributions. The estimators corresponding to the combinations 11 (α̃′3, α̃

′′′
4 )

and 10 (α̃3, α̃
′′′
4 ) were found consistently to be the ones with the largest MSEs, and this is

the reason why the results for them have been omitted from Figure 4. Both combinations
involve the estimator α̃′′′4 of α4.

The lessons gleaned from our simulation study are pulled together in Section 4 below.

4. Concluding remarks

In this paper we have proposed α†4, an adaptation of Blest's (2003) coe�cient of kurtosis
adjusted for skewness, α∗4. For four �exible unimodal models considered in Section 2.2,
α†4 was found generally to outperform α∗4 in terms of its ability to remove the e�ects of
asymmetry. Also, the lower bound for α†4 is closer to being constant than that for α∗4.

Our Monte Carlo investigation of the MSEs of various moment-based estimators of α∗4
and α†4, reported in Section 3.2, identi�ed the estimators corresponding to the combinations
of any of the estimators of α3 with α̃′′4 as being the ones which generally performed best when
working with samples drawn from distributions with heavier than normal tails. On the other
hand, for samples drawn from distributions with lighter than normal tails, the estimators
based on the combinations of any of the estimators of α3 with α̃4 were found generally
to perform best. In the intermediate case, for samples from distributions with close to
normal tails, the estimators which generally performed best were those corresponding to
the combinations 3 (α̃′′3, α̃4) and 9 (α̃′′3, α̃

′′
4). It seems appropriate, therefore, to recommend

use of α̃′′3 throughout. The most appropriate estimator of α4 depends on tailweight; α̃′′4
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Figure 4: Empirical MSE, as a function of sample size, n, of estimators of α∗4/(1 + α∗4) (�rst column) and
α†4/(1 + α†4) (second column) based on the combinations of the estimators of α3 and α4 identi�ed in the
keys. The rows correspond to data simulated from the: t distribution with ν = 4.1 (�rst); skew-normal
distribution with α = 1 (second); SAS-normal distribution with δ = 20 and ε = 10 (third). The results
for those combinations producing the highest MSEs have been omitted so as to aid the identi�cation of the
combinations corresponding to the estimators with the lowest MSEs.
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would seem to be the more usual choice, as it is good for heavier and normal tails, but users
should be aware that its performance is not so good for light tails. That said, of all the
di�erent combinations considered, only combination 1 involves estimators of both α3 and α4

� the classical moment estimators � which are readily available within any of the major
statistical packages. These conclusions all apply to estimators of both α∗4 and α†4, but it has
to be admitted that the performance of estimators of α†4 is generally a little inferior to those
of α∗4.

Like α4 and α∗4, α†4 is a moment-based measure which will not exist if the fourth moment
does not exist. As stated in the Introduction, the potential non-existence of moment-based
kurtosis measures has rightly led researchers to propose numerous alternative measures of
kurtosis. In Jones et al. (2011), we identify two wide classes of quantile-based kurtosis
measures which are skewness-invariant for certain families of distributions. Development of
the ideas explored there we consider to warrant future investigation.
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