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ABSTRACT

If the univariate random variable X follows the distribution with distribution func-

tion F , then so does Y = F−1(1 − F (X)). This known result defines the type of

(generalised) symmetry of F , which is here referred to as T-symmetry; for example,

ordinary symmetry about θ corresponds to Y = 2θ − X. Some distributions, with

density fS, display a density-level symmetry of the form fS(x) = fS(s(x)), for some

monotone transformation function s(x) 6= x; I call this S-symmetry. The main aim of

this article is to introduce the S-symmetric dual of any (necessarily T-symmetric) F ,

and to explore the consequences thereof. Chief amongst these are the connections be-

tween the random variables following F and fS, and relationships between measures

of ordinary symmetry based on quantiles and on density values.

Keywords: density-based asymmetry; probability integral transformation; quantile-

based skewness; R-symmetry; S-symmetry.
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1. Introduction

The usual notion of symmetry of a univariate absolutely continuous distribution

is that the random variable X− θ has the same distribution as θ−X for some centre

of symmetry θ. This will be called “ordinary symmetry” in this article.

Even when not ordinary symmetric, a distribution might have an alternative sym-

metry such as, for non-negative X, log-symmetry, that is, the ordinary symmetry of

the distribution of logX. This is equivalent to saying that X has the same distribu-

tion as φ2/X for some φ. See Seshadri (1965). In fact, as is known, every distribution

has a symmetry of this sort: for each distribution, there is a unique continuous de-

creasing function t such that X has the same distribution as t(X). Here, I shall call

this ‘T-symmetry’. See Section 2.1.

Recently, there has been interest in an alternative, density-based, symmetry, the

identification of a continuous monotone transformation function s(x) 6= x such that

f(x) = f(s(x)) for all x in the support of the distribution with density f . Here, I

shall call this, as I have elsewhere, ‘S-symmetry’. See Section 2.2.

The main contribution of this article is to establish a duality between T- and

S-symmetry. Specifically, in Section 3.1, I shall identify, for each distribution with

a specific T-symmetry, the density of a corresponding distribution with S-symmetry

where the symmetry functions are the same, s(x) = t(x) for all x. I shall also show

how the random variables associated with these dual distributions can be obtained

one from the other. After description of a number of special cases and antecedents in

Section 4, the remaining main sections of the paper consider some further aspects of

the interaction between T- and S-symmetry (Section 5) and some further aspects of

T-symmetry alone (Section 6). There are brief closing remarks in Section 7.

2. Background: T- and S-Symmetries

2.1 T-Symmetry

Let the distribution of interest have invertible distribution function F . To identify

t, start with the observation that if U is uniformly distributed on (0, 1), then 1 − U ,

and no other function of U , is also distributed as U(0, 1). The probability integral

transformation (PIT) then tells us that X = F−1(U) follows the distribution F . But

because 1 − U is also uniform on (0, 1), it must be the case that Y = F−1(1 − U)

follows F also. Thus, both X and Y = t(X), where

t(x) = F−1(1 − F (x)), (1)

have the same distribution, F .

For an alternative derivation, consider determining t such that

F (x) = P (X ≤ x) = P (t(X) ≤ x) = P (X ≥ t−1(x)) = 1 − F (t−1(x))
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or equivalently F (t(x)) = 1 − F (x), and hence (1). This argument assumes that t is

decreasing (as indeed is (1)); if t were increasing, F (x) = F (t−1(x)) for all x implies

t(x) = x.

The beautiful observation (1), which applies to every continuous distribution F ,

is certainly very far from new (e.g. Doksum, 1975, MacGillivray, 1986), but seems

not to be very widely appreciated. I particularly wish to draw attention to the

deep and insightful treatment of this and related issues by Kucerovsky, Marchand

& Small (2005). See that paper for a comprehensive analysis additionally allowing

transformations with singularities (which I shall touch on briefly in Section 6.1) and

much more rigorous and wide-ranging mathematics than will be found here.

Here are some immediate general observations on (1). First, t(x) can be written

in terms of the survivor function F (x) = 1−F (x), trivially as t(x) = F−1{F (x)} and

equivalently as t(x) = F
−1{F (x)}. The function t(x), as well as being decreasing, is

self-inverse: t(t(x)) = x; t−1(x) = t(x). And, rearranging a formula above,

F (t(x)) + F (x) = 1. (2)

Of course, the distribution of X − t(X) is ordinary symmetric about zero.

The symmetry of this subsection, which to make distinct from the different sym-

metry to follow will be called ‘T-symmetry’, can be thought of as being on the level of

distribution functions and hence intimately associated with transformations of ran-

dom variables.

2.2 S-Symmetry

In contrast to the distribution-level T -symmetry of Section 2.1, in this subsection I

assume the existence of a density function, supposed below to be differentiable except

perhaps at its mode, and hence consider symmetry at the level of the density,

fS(s(x)) = fS(x) (3)

for all x and some function s(x) 6= x. Motivated by the special case of R-symmetry

introduced in the seminal work of Mudholkar & Wang (2007) which takes s(x) = ψ2/x

for x > 0, I call the property (3) ‘S–symmetry’ in Jones (2010, 2012). It is superficially

reminiscent of the ‘generalized symmetry’ of Azzalini (2012) and Azzalini & Capitanio

(2014, Section 1.3.2); however, a requirement of the latter that a certain determinant

be unity affords no generalization over ordinary symmetry in the univariate case of

interest here, but is designed for deployment as a multivariate extension.

Interest in the current paper centres on s being a one-to-one function. If s is

decreasing, f ′

S has opposite signs at x and s(x) and hence fS is unimodal or possibly,

in the case of finite support, uniantimodal, with mode or antimode at x0 such that

s(x0) = x0. It also then follows that s, like t in Section 2.1, must be self-inverse. Also
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as for t, s(x) 6= x increasing is ruled out, in this case because it implies an increasing

or decreasing density which would have to take equal values at x and s(x).

As noted in Chaubey, Mudholkar & Jones (2010), the R-symmetric distributions

coincide with the Cauchy–Schlömilch distributions introduced by Baker (2008). Sim-

ilarly, in the unimodal case, the S-symmetric distributions coincide with the ‘trans-

formation of scale’ distributions of Jones (2010, 2014); see Section 4.4.

3. The S-Symmetric Dual of a Distribution

I will now use fS specifically for the density of the S-symmetric dual of f defined

in the theorem below, that is, the density of an S-symmetric distribution depending

only on f and/or F and with

s(x) = t(x) = F−1(1 − F (x)). (4)

Theorem. The density of the S-symmetric dual of the distribution F with density

f is given by

fS(x) =
2f(x)

1 − t′(x)
=

2f(x)f(t(x))

f(x) + f(t(x))
, (5)

where t is given by (4), the latter representation being the harmonic mean of the

density f(x) and the function f(t(x)).

Proof. The S-symmetry of fS with s satisfying (4) is obvious from the final ex-

pression in (5). That fS is a density follows from its nonnegativity and the fact

that

I ≡
∫

fS(x)dx = 2

∫

f(x)f(t(x))

f(x) + f(t(x))
dx = 2

∫
[

f(x) − f 2(x)

f(x) + f(t(x))

]

dx.

By using the substitution y = t(x) in the second part of the final integral, we get

I = 2−I so that I = 1. �

I do not know how to construe and prove uniqueness of the construction above.

However, I am not aware of any other candidates for this role.

When the integrals in the proof above have upper limit y, we find that FS(y) =

2F (y) − 1 + FS(t(y)) where FS is the distribution function of the dual S-symmetric

distribution. Using (2) and rearranging leads to the following intriguing invariance

relationship between probabilities of lying in certain intervals under f and fS:

FS(y) − FS(t(y)) = F (y)− F (t(y)). (6)

By differentiation of fS, any stationary point, xp, of it satisfies ℓ(xp) = ℓ(t(xp))

where ℓ(y) = f ′(y)/f 3(y). If fS is unimodal, this means that its mode, x0, must
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equal the median, mF , of f , because t(mF ) = F−1(1−F (mF )) = mF ; also, from (5),

fS(mF ) = f(mF ).

Now let X ∼ f , where ∼ denotes ‘follows the distribution with density’, and

XS ∼ fS given by (5). It can readily be checked that X and XS are related in the

following way:

XS =

{

X with probability 1
1−t′(X)

= f(t(X))
f(X)+f(t(X))

,

t(X) with probability −t′(X)
1−t′(X)

= f(X)
f(X)+f(t(X))

,
(7)

X =

{

XS with probability 1/2,

t(XS) with probability 1/2.
(8)

These relationships are reminiscent of Theorem 2.1 of Jones (2012) and for good

reason: see Section 4.4 below. They can be used to good effect in random variate

generation of S-symmetric distributions; for the main example thereof, see Section

4.2.

4. Special Cases and Antecedents

4.1 Ordinary Symmetry

If F is ordinary symmetric about θ, F (2θ − x) = 1 − F (x) and so t(X), which

has the same distribution as X, is given by t(X) = F−1{F (2θ − X)} = 2θ − X, as

expected. Also, since f(2θ − x) = f(x), (5) yields fS(x) = f(x), and there is no

distinction between T- and S-symmetry.

4.2 R-Symmetry

If F on x > 0 is log-symmetric, F (φ2/x) = 1 − F (x) (Seshadri, 1965). By (2),

the equidistribution here is of X and t(X) = φ2/X. Using f(φ2/x) = x2f(x)/φ2, the

S-symmetric, or more specifically R-symmetric (Mudholkar & Wang, 2007), dual of

log-symmetric f has density

fR(x) = 2x2f(x)/(x2 + φ2), x > 0. (9)

A particular example of this R-symmetric duality is when f is the density of

1/
√
B and B follows the Birnbaum-Saunders distribution, which is dual to the R-

symmetric root-reciprocal inverse Gaussian, or CoGaussian, distribution (Mudholkar,

Yu & Awadalla, 2014), that is, the distribution of 1/
√
G when G follows the inverse

Gaussian distribution. In Jones (2012), I mention this and the consequential relation-

ships between the Birnbaum-Saunders and inverse Gaussian distributions themselves,

which give a derivation of the Michael, Schucany & Haas (1976) method for generating

inverse Gaussian random variates.
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The lognormal distribution, in its usual normal-based parametrisation, is both

log-symmetric (about eµ) and R-symmetric (about eµ−σ2

). However, the lognormal

distribution is not ‘self-dual’, and it is clear from (9) that no distribution can be.

4.3 Exponential and Power Law Symmetries

If F is the exponential distribution with density f(x) = λe−λx, λ, x > 0, then it

is easy to show that t(x) = − log(1 − e−λx)/λ ≡ te(x), so if X has the exponential

distribution, te(X) has the same exponential distribution. Changing argument in (2),

exponential T-symmetry corresponds to distributions F on x > 0 such that

F (−λ log u) + F (−λ log(1 − u)) = 1,

0 < u < 1. The S-symmetric dual of the exponential distribution has density

2λe−λx(1 − e−λx), λ, x > 0.

This is a special case of the exponentiated exponential distribution (Gupta & Kundu,

1999). Use of the exponential symmetry represented by te(x) in transformation of

scale distributions is suggested from other considerations in Jones (2010, 2014).

If F is the power law distribution with density f(x) = αxα−1, α > 0,

0 < x < 1, then tp(X) ≡ (1 − Xα)1/α follows the same power law distribution. In

this case, T-symmetry corresponds to distributions on 0 < x < 1 such that F (xα)+

F ((1 − x)α) = 1. The S-symmetric dual of this F has a more complicated density

that is omitted.

4.4 Transforming Ordinary Symmetric Distributions

Write F (x) = G(Π−1(x)) where G is an arbitrary distribution ordinary symmetric

about zero and Π = F−1(G) is the appropriate increasing function such that Π(Y )

follows the distribution F when Y comes from G (with density g). Thus,

t(x) = Π
(

G−1
{

1 −G(Π−1(x))
})

= Π
(

G−1
{

G(−Π−1(x))
})

= Π(−Π−1(x)), (10)

using the ordinary symmetry about zero ofG. Now, since f(x) = g(Π−1(x))/Π′(Π−1(x))

and t′(x) = −Π′(−Π−1(x))/Π′(Π−1(x)), the density of the S-symmetric dual of F is

2g(Π−1(x))

Π′(Π−1)(x) + Π′(−Π−1)(x)
.

The particularly simple form fS(x) = 2g(Π−1(x)) arises if Π is chosen to satisfy

Π′(y) + Π′(−y) = 1 or essentially equivalently Π(y) − Π(−y) = y. (11)
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These are precisely the ‘transformation of scale’ distributions of Jones (2010, 2014).

And they are dual to F written as G(Π−1(x)) using the same G and Π.

In fact, because of the arbitrary nature of the choice of symmetric g, for any t(x)

given by (1), it is possible to choose Π through a variation on the right-hand equation

in (11), namely

Π−1(x) = x− t(x),

to equate the class of S-symmetric distributions to the class of transformation of scale

distributions. Since Π−1 = G−1(F ), this is equivalent to specifying G via the following

ordinary symmetrisation of F :

G−1(u) = F−1(u) − F−1(1 − u).

5. Further Aspects of T- and S-Symmetry Together

5.1 Measures of Ordinary Asymmetry

Ordinary asymmetry, that is, the degree to which a distribution departs from

ordinary symmetry, might be measured by how far the symmetry transformation

F−1(1−F (x)) departs from −x. Doksum’s (1975) ‘symmetry function’ is of precisely

this form. It is AD(x) = 1
2
{F−1(1 − F (x)) + x}. Doksum argues that AD(x) should

be compared with the natural centre of ordinary symmetry, the median mF , yielding

a functional asymmetry measure proportional to F−1(1 − F (x)) − 2mF + x. Fur-

ther, making this quantity scale free by dividing by the corresponding scale measure

F−1(1 − F (x)) − x yields the function

γF (x) ≡ F−1(1 − F (x)) − 2mF + x

F−1(1 − F (x)) − x
. (12)

This differs from the more usual quantile-based asymmetry function of David & John-

son (1956),

γF (u) ≡ F−1(1 − u) − 2mF + F−1(u)

F−1(1 − u) − F−1(u)
, 0 < u < 1, (13)

only by the change of scale u = F (x). See also MacGillivray (1986).

On the other hand, Critchley & Jones (2008) propose the following density-based

asymmetry function for use with unimodal distributions (see also Boshnakov, 2007).

This is of particular interest for unimodal S-symmetric distributions. Write xL(p)

and xR(p), 0 < p < 1, for the solutions of fS(x) = pfS(x0) to the left and right of

the mode, x0, respectively, when fS is unimodal; note that xL(p) = s(xR(p)). Then,

their scaled asymmetry function takes the form

γfS
(p) ≡ xL(p) − 2x0 + xR(p)

xL(p) − xR(p)
=
s(xR(p)) − 2x0 + xR(p)

s(xR(p)) − xR(p)
. (14)
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For the S-symmetric dual of f , s(x) = F−1(1 − F (x)), x0 = mF , and if we set

x = xR(p), the resulting density-based measure γfS
(x) obtained from (14) is the same

as γF (x) at (12). The versions of (12) based on a change of scale to (0, 1) differ

only in the way this is done: distribution-based u = F (x) in (13) and density-based

p = fS(x)/fS(mF ) in (14).

5.2 An Intermediate Distribution

With t given by (4), from (7), t(XS) is like XS with the probabilities reversed:

t(XS) =

{

X with probability −t′(X)
1−t′(X)

= f(X)
f(X)+f(t(X))

,

t(X) with probability 1
1−t′(X)

= f(t(X))
f(X)+f(t(X))

.
(15)

The distribution of t(XS) has density

fT (S)(x) =
2f 2(x)

f(x) + f(t(x))
, (16)

which features in the proof of the theorem in Section 3. As with (5), it is superficially

surprising that this is a bona fide density.

6. Further Aspects of T-Symmetry Alone

6.1 Two Equi-Distributed Transformations?

The standard Cauchy distribution provides a special case in which X has the

same distribution as both −X and 1/X. Since F (x) = (1/2) + (tan−1 x)/π, (1) gives

t(x) = −x.
The equi-distribution of X and 1/X arises by allowing transformations with sin-

gularities (for much more on the latter, see Kucerovsky, Marchand & Small, 2005).

Equi-distribution of X and −X remains unique among continuous decreasing trans-

formations. Another aspect of this is that 1/X is the unique continuous decreasing,

and hence equi-distributed, transformation for the half-Cauchy distribution (see also

Seshadri, 1965). This is the standard Cauchy distribution truncated at 0; it has

F (x) = 2(tan−1 x)/π, for which (1) gives t(x) = tan{(π/2) − tan−1 x} = 1/x.

6.2 Survival Copulas

Suppose that X1 ∼ f1 with distribution function F1 and X2 ∼ f2 with distribution

function F2 are jointly distributed with distribution function F (x1, x2). Of course, the

joint distribution of U1 = F1(X1) and U2 = F2(X2) is the copula, C, associated with

F . Now, a well known alternative copula associated with this copula is its survival

copula, Ĉ(v1, v2) = v1 + v2 − 1 +C(1 − v1, 1− v2), which is the distribution function
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of 1 − U1 and 1 − U2 (e.g. Nelsen, 2006, Section 2.6). The name, of course, arises

because this copula is the distribution of V1 = F 1(X1) and V2 = F 2(X2) which, in

the current context, can also be seen as Vi = Fi(ti(Xi)) where ti(x) = F−1
i (1−Fi(x)),

i = 1, 2, as at (1).

The distribution function associated with the survival copula is simply F (t1(x),

t2(y)). Its marginal distributions are F1 and F2, the same as those of F , but its

dependence structure is that of t1(X1) and t2(X2) rather than X1 and X2.

6.3 Two Ways From X to Z

Suppose that X ∼ f and Z ∼ ℓ with distribution function L, say. Then the

usual way of transforming Z to get X, via the PIT, is Z = L−1{F (X)}. This can

equivalently be written Z = L
−1{F (X)}. However, again, since F (X) and 1 − F (X)

have the same distribution, this transformation is not, as might be assumed, unique:

there is another pair of equivalent transformations with the same distribution as

Z, namely, L−1{F (X)} = L
−1{F (X)}. Of course, the latter pair are the result of

applying the transformation L−1(L) to the former pair.

As just one minor example, the Weibull distribution arises as the distribution of

Eβ , say, where E follows the exponential distribution with parameter λ > 0, and

β > 0. What is not so well appreciated is that the Weibull distribution also arises as

the distribution of {− log(1 − e−λE)/λ}β.

7. Closing Remarks

To repeat, T-symmetry is a property of every univariate continuous distribution,

and it and its consequences may well be familiar to many readers. S-symmetry, on

the other hand, defines a particular class of distributions, those with the density

symmetry property (3) for some function s(x) 6= x. The main aim of this article —

the theorem of Section 3 — has been to introduce the S-symmetric analogue of any

given (T-symmetric) distribution F and to explore the consequences thereof, chief

amongst which may be the random variable connections at the end of Section 3 and

the relationships between measures of ordinary symmetry in Section 5.1.
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