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Summary. In this paper, a frailty modelling framework is presented for representing and mak-
ing inference on individual heterogeneities relevant to the transmission of infectious diseases,
including heterogeneities that evolve over time. Central to this framework is the use of multivari-
ate data on several infections. We explore new simple but flexible families of time-dependent
frailty models, in which the frailty is modulated over time in a deterministic fashion. Methods of
estimation, issues of identifiability and model choice are discussed. Results from such models
are interpreted in the light of concomitant information on routes of transmission. Applications
to paired serological survey data on a range of infections with same and different routes of
transmission are presented.
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1. Setting the scene

It is well established that individuals in a population show variation with respect to proper-
ties that are relevant to the transmission of infectious diseases (Diekmann and Hesterbeek,
2001). There is ample empirical evidence of variation between individuals, also known as
individual heterogeneity, for most measurable attributes such as age, gender, sexual ac-
tivity, family size, geographical location and genetic characteristics (Anderson and May,
1991). For example, heterogeneity in sexual activity levels are likely to be important in
the spread of sexually transmitted infections; personal hygiene is likely to be relevant in
the spread of infections transmitted by the faecal-oral route; the propensity of individuals
to associate together may be a relevant factor in the spread of infections transmitted by
airborne droplets or close contact.
The presence of heterogeneity, and its degree, can have a substantial bearing on the trans-
mission of infection, inflating contact rates within certain subgroups and thus increasing
reproduction numbers, with consequences on the likely impact of mass vaccination pro-
grammes and other control measures. However, while the importance of heterogeneity in
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the transmission of infection is well understood, and its presence in most cases is well ac-
cepted, this recognition has not been translated adequately into infectious disease models.
Commonly, such models ignore completely any relevant heterogeneities, or explicitly take
into account a small number of key and measurable sources of heterogeneity - such as
age effects for childhood infections, or variation in sexual practices for sexually transmit-
ted infections (Anderson and May, 1991; Vynnycky and White, 2010). Models that seek
to account for more than a single source of heterogeneity are uncommon (Farrington and
Whitaker, 2005).
This gap between the mathematical theory of infectious disease transmission and the statis-
tical models actually used is due to three factors: (i) data on known sources of heterogeneity
are usually limited; (ii) other potential sources of heterogeneity can only be guessed at and
discussed qualitatively rather than integrated into quantitative modelling; and (iii) there
may be further, unsuspected sources of heterogeneity, which by their very nature remain
imponderable.
The data on sources of heterogeneities are difficult to obtain for two main reasons. First, be-
cause it is not enough to collect data on individuals who are infected, it is also necessary to
collect data on the individuals who infected them, and indeed on the individuals with whom
they make contact. Such data are not easy to obtain. This difficulty is compounded by the
second problem, which is that it is often not possible to define what constitutes a contact. A
contact is commonly understood as an event during which transmission of infection between
two individuals could occur (Diekmann and Hesterbeek, 2001), if one was infected and the
other susceptible. However, only for infections for which contact events are well-defined,
such as ‘having sexual intercourse’ for sexually transmitted infections, can we expect to
make successful attempts at quantifying the extent of relevant heterogeneities. Unfortu-
nately, for most types of infection including waterborne infections, foodborne infections,
community-acquired respiratory infections or any infection only requiring spatio-temporal
proximity for transmission, there is no event that can be clearly or uniquely defined as
a contact. For these infections it is usually necessary to define a contact by some proxy
variable. For example, for infections transmitted via the close-contact route, social contact
surveys have been used to quantify rates of proxy contacts to distinguish between close and
non-close contacts (Edmunds et al., 2006; Mossong et al., 2008).
In the present paper, in view of the paucity of data on sources of heterogeneities available,
we attempt to address the problem of modelling heterogeneities in the transmission of infec-
tious diseases without knowing in advance the source of these heterogeneities, and without
a precise definition of what constitutes a contact.
Farrington et al. (2001) suggested to make inferences on heterogeneities indirectly using
the fact that they leave an epidemiological footprint or signature through the associations
they induce between different infections in the same individuals. This fact can be exploited
using multivariate serological survey data. Serological data are a key resource in infectious
disease epidemiology and are obtained by testing blood serum residues for the presence of
antibodies to one or more infections. A positive (negative) result indicates prior infection
(susceptibility to infection), giving rise to current status data (Sun, 2006). Current status
data in this context means that if the two survival variables of interest T1 and T2 represent
the ages at the onset of infection by two distinct infectious agents, then their onset can only
be determined to lie below or above the age x when the survey was undertaken. In this
context, the time scale is age and the defining time point from which times are measured is
birth. The association between two infections, which may or may not share the same route
of transmission, can be investigated through the use of bivariate serological survey data on
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the same individuals. Such data enable us to observe the effects of heterogeneity without
explicitly specifying the mechanisms that give rise to them.
Consider two infections and suppose each individual in the population has some measurable
characteristics and unobserved (latent) characteristics. The measured characteristics are co-
variates relevant to the transmission of infectious diseases, such as age, sexual behaviour,
needle sharing practice or duration of drug injection. The unmeasured characteristics may
represent behavioural or environmental factors (such as sociability, personal hygiene, family
size or nursery attendance) which affect the transmission of both infections, or immuno-
logical factors which affect individual susceptibilities to both infections. To facilitate the
notation, it is assumed in the sequel that age x is the only measured attribute of an individ-
ual and that these unmeasured attributes are described by a random variable U > 0 with
density f(U) and E(U) = 1. Inspired by the work of Coutinho et al. (1999), Farrington
et al. (2001) showed how bivariate serological survey data on two infections could be used to
estimate the degree of heterogeneity using shared frailty models (Duchateau and Janssen,
2008; Wienke, 2011) for the force of infection j (j = 1, 2):

λj(x,U) = U λ0j(x) ,

for an individual of age x and positive random effect (frailty) U , where the baseline forces
of infection λ0j(x) are independent of U and describe the age effect. The random variation
in U induces the association between the failure times T1 and T2; T1 and T2 are condi-
tionally independent given U = u. However, the work of Farrington et al. (2001) does not
use the available information on how the strength of association, and hence the degree of
heterogeneity, varies with age. Such information is important as it can suggest pointers to
the source of the heterogeneity, for example if the association is sustained in adulthood it
may reflect a common source of transmission for the two infections.
The frailty modelling framework applied to paired serological survey data previously by
Farrington et al. (2001), Farrington and Whitaker (2005) and Hens et al. (2009) has re-
cently been extended to incorporate age-dependence in the heterogeneity (Farrington et al.,
2012). This leads to a shared frailty model of the form

λj(x, U(x)) = U(x) λ0j(x) , (1)

for j = 1, 2 with shared frailty U(x), which may vary with age. We argue that such an
approach provides valuable insights into the presence, strength, source and variation with
age of heterogeneities that are relevant to the transmission of infectious diseases.
Frailty models are notoriously difficult to identify, a problem compounded by the introduc-
tion of age dependence. An important question is whether paired current status data contain
enough information to distinguish information between competing plausible models for the
time-varying frailty. Farrington et al. (2012) proposed simple families of time-varying frailty
models, but did not investigate these comprehensively. The primary purpose of the present
paper is to determine whether these families – which can include models with non-gamma
distributions for the frailties at baseline x = 0, different correlation structures, and both
additive and multiplicative structures – are identifiable in practice from paired serological
survey data. We investigate this using data on a range of infections.
The remainder of the paper is organized as follows. In Section 2, recently developed families
of time-varying frailty models are presented along with a discussion of identifiability issues
for shared frailty models. Methods of estimation are given in Section 3. In Section 4, the
methods developed in this paper are applied to paired serological survey data on several
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pairs of infection with same and different modes of transmission. Concluding comments are
given in Section 5.

2. Modelling time-varying frailties and identifiability issues

Several ways of modelling time-dependent frailties have been proposed, including stochastic
processes (Aalen et al., 2008, Chapter 11). For an overview of the literature, the interested
reader is referred to Wienke (2011) (pp. 232–234) and the references therein.
Recently, Farrington et al. (2012) proposed simple but flexible families of time-varying
frailty models, in which the frailties are modulated over time in a deterministic fashion
(Farrington et al., 2012). Suppose that U(x) = w(x,Z1, . . . , Zq) for some known function
w which may involve parameters to be estimated, where Z1, . . . , Zq are independent time-
invariant frailties of unit mean. With our applications of interest, the interpretation of the
Zj (j = 1, . . . , q) should be motivated by epidemiological considerations.
Our focus of attention is on the frailty variance, which describes the degree of unmeasured
heterogeneity in the population. We require the frailty variance, var(U(x)), to be time-
dependent and simultaneously, for identification purposes, the frailty mean, E(U(x)), to
be equal to one. For pairs of infections with a similar mode of transmission, we expect
var(U(x)) to remain above a nonzero threshold at all ages, representing individual hetero-
geneity in contact rates for this common transmission route. For pairs of infections with
dissimilar modes of transmission, we expect var(U(x)) to tend to zero in adulthood. In
childhood, we expect var(U(x)) to be nonzero, as most non-sexual transmission routes are
largely confounded owing to the closeness and intensity of contacts between children. The
heterogeneity, and hence var(U(x)), is likely to decline with age owing to the homogenising
effects of social factors such as school attendance and increasing social distance.
The model setting of Farrington et al. (2012) does include frailty models with different
correlation structures such as piecewise frailty models. Paik et al. (1994) and Wintrebert
et al. (2004) proposed piecewise frailty models with nested structures. Ignoring the nesting,
one could build piecewise-constant frailty models on disjoint age intervals Ij = (xj−1, xj ]
for j = 1, . . . , q with x0 = 0 and xq < ∞ as follows. Let

U(x) =
q∑

j=1

ZjIj(x) , (2)

where Zj > 0 are identically distributed with unit mean and variance σ2
j (j = 1, . . . , q),

and Ij(x) = 1 if x ∈ Ij (with Ij(x) = 0 otherwise). If σ2
j = σ2 for j = 1, . . . , q, then

the variance of U(x) is constant. A declining frailty variance is obtained by assuming e.g.
σ2

j = σ2 exp
{−([mj −m1]/ρ)k

}
, where mj is the midpoint of Ij and k is some known pos-

itive integer, for example k = 2.
Piecewise frailties are a natural extension of age-invariant frailties to capture age-varying
heterogeneity. However, piecewise frailties assume that the frailty in age group j is inde-
pendent from the frailty in age group j + 1. At the other extreme, Farrington et al. (2012)
proposed the following time-varying frailty model in which the frailties across age groups
are perfectly correlated:

U(x) = 1 + [Z − 1]h(x) , 0 ≤ h(x) ≤ 1 , (3)
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where Z > 0 is an age-invariant frailty of unit mean and h(x) is a deterministic function.
To model the early childhood decline in heterogeneity one could choose h(x) as

h(x) = exp
{−(x/ρ)k

}
. (4)

Note that E(U(x)) = 1 and var(U(x)) = h(x)2 × var(Z). Under general conditions, the
model (3) with h(x) chosen as in (4) (and ρ > 0) predicts that the heterogeneity and hence
the strength of association tends to zero as x increases, unless h(x) = 1. For infections with
distinct transmission routes, associations that tail off to zero can be expected. But if we
observe an association greater than zero at large x, more flexible models are needed.
Farrington et al. (2012) generalized the 1-component frailty model (3) to families that
contain more than one age-invariant frailty. Consider the additive frailty model

U(x) =
q∑

j=1

Zjhj(x) ,

q∑

j=1

hj(x) = 1, 0 ≤ hj(x) ≤ 1 , (5)

for j = 1, . . . , q. The restrictions on the functions hj(x) ensure that U(x) is non-negative
with unit mean. Consider a pair of infections that are transmitted by the same route. For
such a pair of infections one might expect heterogeneity to decline to some positive constant
value. One could choose a 2-component frailty model with

h1(x) =
exp

{−(x/ρ)2
}

1 + exp {−(x/ρ)2} and h2(x) =
1

1 + exp {−(x/ρ)2} ,

where the first component Z1 represents transient (not route-specific) declining heterogene-
ity in childhood and the second component Z2 represents persistent (route-specific) hetero-
geneity in adulthood. The variance of U(x) is var(U(x)) = h1(x)2 × var(Z1) + h2(x)2 ×
var(Z2). Note that the additive family (5) does include the piecewise frailty model (2) when
hj(x) = Ij(x).
Unfortunately, the additive model is a little unsatisfactory; the restrictions imposed on the
age-dependent trajectories hj(x) mean that the presence of one type of frailty does impact
on the other. An alternative to the additive model (5) is the multiplicative family

U(x) =
q∏

j=1

[1 + (Zj − 1)hj(x)] , 0 ≤ hj(x) ≤ 1 , (6)

for j = 1, . . . , q. For example, one could set q = 2 and choose h1(x) as in (4) and h2(x) = 1.
This 2-component multiplicative model is perhaps more easily interpretable than its addi-
tive counterpart. The variance of U(x) is var(U(x)) = h1(x)2×var(Z1)+var(Z2)+h1(x)2×
var(Z1)× var(Z2). It is easy to see that the 1-component frailty model (3) is a special case
both of the additive family (5) with q = 2 and var(Z2) = 0 and of the multiplicative family
(6) with q = 1.
It is well known that time-invariant frailty models are not identifiable from single samples
of survival data, unless strong parametric assumptions are imposed on the baseline haz-
ard (Aalen et al., 2008). Essentially, this is because there is no independent information
available to separate the effect of heterogeneity in the population from the shape of the
baseline hazard. Shared frailty models applied to bivariate survival data do enable time-
invariant frailty models to be identified: the independent information required is contained
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in the cross-ratio function (Clayton, 1978; Oakes, 1989). Although paired current status
data contain much less information than bivariate right-censored data, the pairing still pro-
vides the information required to identify the frailty, namely information on the cross-ratio
function expressed as (Hougaard, 1984; Farrington et al., 2012):

CRF (x, x) =
var(U | T1 > x, T2 > x)
E(U | T1 > x, T2 > x)2

+ 1 , (7)

which measures how the strength of association varies over time in survivors.
However, further elaboration of the models to include time-varying frailties introduces new
identifiability problems. For example, a decreasing cross-ratio function could either arise
from a time-invariant inverse Gaussian (or other) frailty, or from a time-varying frailty such
as that proposed in equation (3).
There are some limits to this non-identifiability: it can be shown that some association
patterns cannot arise from a time-invariant frailty (Farrington et al., 2012). Nevertheless,
when interpreting patterns of association in terms of time-varying frailties, it is important
to remain open to the possibility that a contributing factor might be a selection effect,
rather than a variation in the heterogeneity per se. For example, it is wise when observing
decreases in heterogeneity to fit models derived both from gamma and inverse Gaussian
frailties, and possibly others.
These considerations also limit the complexity of the models that can usefully be fitted.
From a conceptual point of view each individual’s hazard is most satisfactorily conceived of
as a stochastic process evolving through time, the mean of which reflects the baseline hazard
and the variance of which reflects the heterogeneity. However, with only one observation
per person, and a censored one at that, it is somewhat ambitious to expect to identify
such a process without strong modelling assumptions. Thus, we take the more empirical
approach embodied in equation (5) or (6), which is to model the baseline hazard and the
variance directly, but assume perfect correlation at different times within individuals - an
admittedly simplistic assumption. This is akin to a model with common slopes and random
intercepts. Nevertheless, a test of the perfect correlation assumption is provided by fitting
the piecewise-independence model (2).
Similarly, the assumption of a shared frailty between infections is probably also somewhat
simplistic. It is likely that some heterogeneity is shared, but supplemented by heterogene-
ity specific to each infection. Thus, in certain circumstances, a more compelling conceptual
model may be that of a correlated, rather than shared, frailty (Hens et al., 2009). However,
lack of identifiability of the unshared components of the frailties or how their variance may
vary with age has restrained us from taking that approach. Nevertheless, the heterogeneity
we model is most likely only part of the heterogeneity.
Further identifiability issues, of a statistical rather than structural nature, stem from non-
linearity of the model. Notably, correlations between the estimates for the parameters in (5)
or (6) are likely to render their estimation problematic when, as is sometimes the case, there
is rather little information in the data on the strength of association between infections.

3. Estimation

Suppose that paired serological data are available on two infections. Let π00(x) be the
probability that an individual of age x has been infected by neither infection and π01 the
probability that an individual of age x has been infected by infection 2 but not infection 1,
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and similarly define π10(x) and π11(x). Recall the shared age-dependent frailty model (1)
for the force of infection j (j = 1, 2). For this model the four probabilities π00(x), π01(x),
π10(x) and π11(x) at age x are computed as

π00(x) = E
(

exp
{
−

∫ x

0

U(x) [λ01(y) + λ02(y)] dy
})

, (8)

π01(x) = E
(

exp
{
−

∫ x

0

U(x)λ01(y) dy
})

− π00(x) , (9)

π10(x) = E
(

exp
{
−

∫ x

0

U(x)λ02(y) dy
})

− π00(x) (10)

and

π11(x) = 1− π01(x)− π10(x)− π00(x) . (11)

The expectations in the expressions (8)–(10) are computed with respect to the random vari-
ables Z1, Z2, . . . , Zq used to define U(x). For mathematical convenience, it is advantageous
to assign frailty distributions to Z1, Z2, . . . , Zq with a simple Laplace transform. Frailty dis-
tributions such as the Gamma or inverse Gaussian can be easily expressed by their Laplace
transform. In the supporting information that is associated with this paper and available
on-line, the three probabilities (8)–(10) are given for a variety of age-dependent frailty mod-
els, which are used in the next Section.
Paired serological survey data on nx individuals of age x give rise to a multinomial obser-
vation (n00x, n01x, n10x, n11x), where nx =

∑
i,j=0,1

nijx and n00x is the number of individuals

of age x in the sample that are uninfected by either infection, n10x is the number of indi-
viduals that are uninfected by infection 2 but have been infected by infection 1, and so on.
Given parameterizations of U(x) and λ0j (j = 1, 2), the shared frailty model (1) is fitted to
these data by maximising a product multinomial likelihood. The multinomial log-likelihood
kernel is: l =

∑
x

∑
i,j=0,1

nijx ln (πij(x)), where ln denotes the natural logarithm. To allow

for overdispersion, for example resulting from test variability, we also model the data by
means of a compound Dirichlet-multinomial distribution with dispersion parameter ν and
0 < ν < 1. This inflates the multinomial component variances by the factor 1 + ν(nx − 1).
If ν = 0, then the distribution reduces to the multinomial. Assuming that the observations
at different ages are independent, the log-likelihood kernel is

lDM =
∑

x

{
ln

(
Γ(ψ)

Γ(nx + ψ)

)
+ ln

(
Γ(n00x + ψπ00(x))

Γ(ψπ00(x))

)
(12)

+ ln
(

Γ(n01x + ψπ01(x))
Γ(ψπ01(x))

)
+ ln

(
Γ(n10x + ψπ10(x))

Γ(ψπ10(x))

)

+ ln
(

Γ(n11x + ψπ11(x))
Γ(ψπ11(x))

)}
,

where ψ = (1 − ν)/ν, hence ν = 1/(1 + ψ). Individuals with data on only one infection
contribute a reduced (binomial or beta-binomial) log-likelihood kernel based on the appro-
priate two-way margin.
The fitting procedure for a pre-specified model is as follows. For the current set of parame-
ters, obtain the baseline hazards λ0j(x) (j = 1, 2), compute the probabilities (8)–(11), then
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evaluate the log-likelihood, and iterate until convergence. For the Dirichlet-mutinomial
model we evaluate the goodness-of-fit by calculating the (scaled) deviance: maximize the
log-likelihood (12), fix ψ at its estimated value and then compute −2 (lDM − lDMSat), where
lDMSat is the saturated log-likelihood given by

lDMSat =
∑

x

{
ln

(
Γ(ψ̂)

Γ(nx + ψ̂)

)
+ ln

(
Γ(n00x + s00(x))

Γ(ψ̂s00(x))

)
(13)

+ ln

(
Γ(n01x + ψ̂s01(x))

Γ(ψ̂s01(x))

)
+ ln

(
Γ(n10x + ψ̂s10(x))

Γ(ψ̂s10(x))

)

+ ln

(
Γ(n11x + ψ̂s11(x))

Γ(ψ̂s11(x))

)}
,

with sij(x) = nijx/nx (i, j = 0, 1), that is, the probabilities πij(x) (i, j = 0, 1) in (12) are
replaced in (13) by their observed counterparts. The baseline hazards λ0j(x) (j = 1, 2)
were parameterized as piecewise constant on age classes chosen on epidemiological grounds.
We investigated sensitivity to the parameterisation of the baseline hazards. Other choices
including continuous parametric baselines resulted in worse fits but did not alter the choice of
frailty distributions or frailty models. For the multiplicative family (6), the expressions (8)–
(10) cannot be computed in closed form. We used the integrate function in the software
package R version 2.15.1 (R Development Core Team, 2011) to carry out the necessary
numerical integration. The function nlm is used to maximize the log-likelihood. Since we
take a population focus, we use the standard marginal Akaike information criterion (AIC)
as a statistical tool for comparison among models (Vaida and Blanchard, 2005).

4. Applications to bivariate serological survey data

In this Section, the statistical models presented in this paper are applied to paired serolog-
ical survey data on several pairs of infections with similar or different mode of transmission
in Subsection 4.1 and Subsection 4.2, respectively. The data have arisen from three large
surveys undertaken in the United Kingdom (Data source: Health Protection Agency). All
are nationwide surveys of serum samples taken for diagnostic testing for conditions uncon-
nected with the infections studied here. For each infection, a positive (negative) test result
indicates prior infection (susceptibility to infection). Equivocal test results are recoded as
being positive indicating prior exposure. Owing to ethical restrictions, the only informa-
tion on each individual is locality of the testing laboratory, gender, age, and test results.
Computations were carried out using the software package R version 2.15.1 (R Development
Core Team, 2011). The paired mumps and rubella infection data as well as the computer
code used to analyze this data set are available upon request.

4.1. Pairs of infections with similar mode of transmission
Toxoplasma and Helicobacter pylori
The serological data are from the year 1996. Whereas the study of Helicobacter pylori
(hereafter abbreviated as H. pylori) was reported by Vyse et al. (2002), a publication on
the Toxoplasma data is currently in preparation. For 3,632 individuals of 1-84 years of
age bivariate data are available on both infections, for 1,243 (3,515) individuals univariate
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data are available on Toxoplasma (H. pylori) only. Toxoplasmosis is a protozoan zoonosis
and H. pylori is a bacterial infection of humans. Both infections are transmitted by oral
ingestion of contaminated matter (Heymann, D. L. (ed.), 2008, pp. 250-253, 613-617).
Heterogeneity in hygiene is likely to result in association between the two infections. The
two infections have been studied together by Unkel and Farrington (2012), who introduced
a new association measure relevant for shared frailty models with bivariate current status
data, denoted φ(x), whose properties approximate those of the cross-ratio function (7)
(Clayton, 1978; Farrington et al., 2012; Oakes, 1989). The value φ(x) = 0 corresponds to
independence; φ(x) > 0 corresponds to positive association, notably that resulting from
heterogeneity, and φ(x) < 0 to negative association, as may arise owing to cross-immunity.
Figure 1 (i) gives the association between times to infection for Toxoplasma and H. pylori
infections.

* * * Figure 1 about here * * *

In the plot, the areas of the points are proportional to the precision of the estimates. A
LOESS (locally weighted scatterplot smoothing) curve is superimposed on the plot to cap-
ture trends with age. Figure 1 (i) shows that there is a strong heterogeneity in childhood
and that the heterogeneity is declining with age towards some positive constant in adult-
hood. The declining association may be due to a selection effect caused by a time-invariant
(non-Gamma) frailty model, or to temporal variation of the frailty itself. We fitted various
shared frailty models to the Toxoplasma and H. pylori infection data. Fitting results for a
selection of ten of those fitted models are presented in Table 1.

* * * Table 1 about here * * *

Model 1a and model 2a are time-invariant shared frailty models in which the frailty is
Gamma and inverse Gaussian distributed, respectively. Fitting results seem not to give
evidence that the declining association is due to a selection effect caused e.g. by a inverse
Gaussian time-invariant frailty. It is also worth mentioning that piecewise-constant frailty
models with constant or declining variance (model 3a and model 4a) fit the data consid-
erably worse than all other models tried. As such, independent piecewise frailties are not
supported by the data. But they are also not supported by epidemiological considerations;
the assumption that the frailty in age group j is independent from the frailty in age group
j+1 is too restrictive. Note that for the piecewise models as well as for some of the additive
and multiplicative models we also tried inverse Gaussian frailties, which did not result in
improved fits.
The best model (lowest AIC and deviance) is the 2-component multiplicative compound
Dirichlet-multinomial model, with the two frailties being independently Gamma distributed.
This model choice is also supported by epidemiological considerations. The first frailty Z1

represents transient heterogeneities in childhood. The second frailty Z2 most likely repre-
sents heterogeneity due to differences in hygiene levels in adulthood.
Figure 1 (i) compares the observed and fitted values of the association measure φ for four
different models. The time-invariant frailty model 1a predicts a constant association. The
piecewise independent Gamma model 4a (with declining variance) does not give a good
fit to the observed association pattern at early ages. The 1-component frailty model 5a
predicts that the heterogeneity tends to zero. The fitted curve that most closely resembles
the observed pattern corresponds to the 2-component multiplicative model 10a.
For model 10a, approximate 95% confidence intervals (CIs) for the parameters of inter-
est, obtained by simulating from a multivariate normal distribution with covariance matrix
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set equal to a numerical estimate of the observed Fisher information matrix, keeping the
dispersion parameter ν fixed at its estimated value, are as follows: for θ1: (.0597, .2416);
for ρ: (3.9967, 9.7078) and for θ2: (.8488, 2.5348). The maximum variance inflating factor
1 + ν̂(nx − 1) over all nx is 1.04 with an average of 1.02.
The degree of unmeasured individual heterogeneity in the population at age x is repre-
sented by the variance of the frailty U(x). Using the estimated parameters for the best
fitting model, an estimate of

√
var(U(x)), along with approximate 95% CIs, is given in

Figure 2 (i).

* * * Figure 2 about here * * *

By age 18, the fitted frailty standard deviation has reached the positive value (.8201) at
which it remains in adulthood.
The contribution of each observation to the overall goodness-of-fit measured by the de-
viance can be evaluated by computing pointwise deviances. Supplementary Figure 1 (i)
in the supporting information displays absolute pointwise deviances for the 2-component
multiplicative multinomial model (model 9a) and its Dirichlet counterpart (model 10a).
A diagnostic plot such as Supplementary Figure 1 is useful for identifying ill-fitting data
points and for visualizing the effect of allowing for overdispersion. Supplementary Figure 1
(i) reveals one outlier at age 1.

Mumps and Rubella
This survey was undertaken in 1986 (Morgan-Capner et al., 1988). Owing to the selective
rubella vaccination programme in adolescent girls, which was in place at the time of the
survey, the data only comprise males. As the data are rather sparse at higher ages, only
4116 individuals aged 1-40 are included in the analysis. Marginal data are not included as
the corresponding number of cases is negligible. Both mumps and rubella are transmitted
by close contact and respiratory droplets. Figure 1 (ii) shows the observed and fitted associ-
ations between times to infection for mumps virus and rubella virus. Again there is positive
association between times to infection, which is declining with age, but the association is
lower than for the previous example. The fitting results are presented in Table 2.
Clearly, the best fit and lowest AIC are obtained by the 2-component Dirichlet-multinomial
model 10b. Nearly for all observed 4-tuples the Dirichlet-multinomial leads to a reduction
in the pointwise deviance (see Supplementary Figure 1 (ii) in the supporting information).
The maximum variance inflating factor is 1.39 with an average of 1.18. That is, the multi-
nomial component variances are increased on average by more than 18%. For model 10b,
approximate 95% CIs for the parameters of interest are as follows: for θ1: (.0510, .3297);
for ρ: (2.4243, 4.1544) and for θ2: (3.1708, 14.8400). An estimate of

√
var(U(x)), along

with approximate 95% CIs, is given in Figure 2 (ii). By age 8, the fitted frailty standard
deviation has reached the positive value (.3770) at which it remains in adulthood.
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Table 2: Fitting results for mumps and rubella infection data.
Parameter

Frailty model estimates deviance df p-value AIC
1b U ∼ Γ(θ, 1/θ) θ̂ = 8.0969 162.91 109 .0006 6444.99
2b U ∼ InvG(1, θ) θ̂ = 5.8919 162.19 109 .0007 6444.27
3b Piecewise independent θ̂ = 3.9742 162.18 109 .0007 6444.26

Gamma
with constant variance

4b Piecewise independent θ̂ = 3.9743 162.18 108 .0005 6446.26
Gamma ρ̂ = 9904.25

with declining variance
5b 1-component θ̂ = 0.0806 134.30 108 .0440 6418.38

Gamma ρ̂ = 2.5332
2-component θ̂1 = 0.0682 130.68 107 .0597 6416.75

9b multiplicative ρ̂ = 2.3599
double Gamma θ̂2 = 14.6230
2-component θ̂1 = 0.1297 108.80 106 .4067 6396.87

10b multiplicative ρ̂ = 3.3027
double Gamma θ̂2 = 7.0297

(Dirichlet multinomial) ν̂ = 0.0018

4.2. Pairs of infections with different mode of transmission
Parvovirus B19 and Cytomegalovirus
This survey was undertaken in 1991. The study of Parvovirus B19 (hereafter referred to
as B19) was reported by Gay et al. (1994) and the study of Cytomegalovirus (hereafter
abbreviated as CMV) by Vyse et al. (2009). As the data are rather sparse at higher ages,
only individuals with age 1-44 are retained for the analysis. For 1268 cases antibody data
on both infections are available. For 3839 (757) individuals data included information on
the seroprevalence on B19 (CMV) only.
B19 causes erythema infectiosum, commonly known as slapped cheek syndrome or fifth
disease. It is clinically similar to rubella. CMV is a member of the herpes virus family
and is able to establish latent infection in the host following primary infection, from which
it can periodically reactivate. Infection is common and usually asymptomatic. B19 is
transmitted by the respiratory route, whereas CMV is transmitted by mucosal contact with
any bodily fluid. In childhood, different transmission routes are confounded to some degree,
so associations are to be expected at younger ages owing to heterogeneity of individual social
contact intensities.
Figure 3 (i) shows the observed association between times to infection for B19 and CMV,
along with some fitted association curves.

* * * Figure 3 about here * * *

The fitted association patterns for the 1-component model (5c) and the 2-component model
(9c) are virtually identical. The corresponding fitting results are given in Table 3.
The best model (lowest AIC) is the 1-component Gamma model (5c). This is not surprising
as the heterogeneity tails off to zero in adulthood, hence a second component that specifies
a route-specific persistent heterogeneity in adulthood is not needed. As it can seen from
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Table 3, the frailty variance for the second component in model 9c is almost zero. Including
an overdispersion parameter in the 1-component model does not improve the model fit for
this pair of infections, see also Supplementary Figure 1 (iii) in the supporting information.
The 95% CIs for the frailty parameters of model 5c are as follows: for θ: (.0747, .2542) and
for ρ: (3.4651, 4.9134). An estimate of

√
var(U(x)), along with approximate 95% CIs, is

given in Figure 2 (iii). By age 10, the fitted frailty standard deviation has virtually reached
zero level.

Table 3: Fitting results for B19 and CMV infection data.
Parameter

Frailty model estimates deviance df p-value AIC
1c U ∼ Γ(θ, 1/θ) θ̂ = 6.8852 245.11 209 .0440 8739.49
2c U ∼ InvG(1, θ) θ̂ = 5.4696 244.70 209 .0457 8739.09
5c 1-component θ̂ = 0.1434 230.54 208 .1357 8726.93

Gamma ρ̂ = 4.1778
2-component θ̂1 = 0.1436 230.56 207 .1253 8728.95

9c multiplicative ρ̂ = 4.1730
double Gamma θ̂2 = ∞
1-component θ̂ = 0.1434 230.54 207 .1254 8728.93

10c Gamma ρ̂ = 4.1778
(Dirichlet multinomial) ν̂ < 0.0001

B19 and H. pylori
The B19 and H. pylori infection data were obtained in the survey that was undertaken in
1996, providing information on seroprevalence on both infections for 1829 individuals of 1-
79 years of age. For 1006 (5125) individuals marginal data are available on B19 (H. pylori)
only. As for this infection pair the main routes of transmission are distinct (respiratory/fecal
oral), we could again expect an existing association in childhood to tail off to zero in adult-
hood. Figure 3 (ii) shows the observed and fitted association patterns. The fitted curve
that most closely resembles the observed pattern corresponds to the 1-component Dirichlet-
multinomial (model 10d). This is also the best fitting model in terms of the AIC, see Table 4.

Table 4: Fitting results for B19 and H. Pylori infection data.
Parameter

Frailty model estimates deviance df p-value AIC
1d U ∼ Γ(θ, 1/θ) θ̂ = 3.6632 395.05 346 .0353 8445.81
5d 1-component θ̂ = 0.1070 385.60 345 .0650 8438.36

Gamma ρ̂ = 9.6043
2-component θ̂1 = 0.1176 385.09 344 .0630 8439.85

9d multiplicative ρ̂ = 9.0066
double Gamma θ̂2 = 9.5051
1-component θ̂ = 0.1118 375.45 344 .1171 8430.21

10d Gamma ρ̂ = 9.5399
(Dirichlet multinomial) ν̂ =0.001

Fitting the Dirichlet-multinomial leads to inflating the multinomial component variances on
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average by about 2% (see also Supplementary Figure 1 (iv) in the supporting information).
The 95% CIs for the frailty parameters of model 10d are as follows: for θ: (.0587, .2032) and
for ρ: (6.2095, 12.8092). An estimate of

√
var(U(x)), along with approximate 95% CIs, is

given in Figure 2 (iv). Compared to the previous example (Figure 2 (iii)), the fitted frailty
standard deviation has tailed off to zero later in adulthood.

5. Discussion

We presented a frailty modelling framework for representing and making inference on in-
dividual heterogeneities that are relevant to the transmission of infectious diseases. This
framework is able to take possible time-related variation in heterogeneity into account. To
incorporate time-dependent heterogeneities via frailty models, we explored new families of
models in which the frailty is modulated over time in a deterministic fashion. The new
models overcome the disadvantages of independent piecewise frailties, the latter being nei-
ther supported by the data nor by epidemiological considerations.
Central to our approach of quantifying relevant heterogeneities and how they evolve over
time is the use of paired serological survey data on different infections for the same indi-
viduals. For the infection pairs we studied, we found strong heterogeneity (association)
in childhood (for mumps and rubella, the association is strong only in early childhood),
which is declining with age to a positive constant (for pairs of infections with same mode
of transmission) or to zero (for pairs of infections with distinct mode of transmission).
Our model choice is guided by both statistical and epidemiological considerations. For in-
fection pairs with common mode of transmission we advocate 2-component models in which
the first (second) component represents transient (persistent) heterogeneities in childhood
(adulthood). For infection pairs with different transmission mode a 1-component model to
represent the early childhood decline in heterogeneity that tails off to zero seems satisfac-
tory.
Frailty modelling, a fortiori time-dependent frailty modelling, is fraught with lack of iden-
tifiability, though it is interesting to note that the data contain sufficient information to
rule out the piecewise independent Gamma models. It is useful to consider what additional
sources of data might help in that respect. One possibility might be to consider multivari-
ate data on more than two infections in the same individuals; such data would need to
be plentiful to avoid extreme sparsity in the cross-classification. Higher-variate data would
also enable one to make inferences about routes of transmission, when these are unknown or
uncertain, exploiting the information on the associations with other infections (Farrington
et al., 2013). Another possibility might be to supplement information on immunoglobulin
G (IgG) antibody prevalence with information on other antibodies, notably IgM which pro-
vide information on recent infection. A third possibility would be to use serological survey
data collected at several time points to identify age and temporal effects, although only data
from single surveys are usually available. A fourth desirable source of enhanced information
would be to include other measurable characteristics (apart from age) in the analysis, e.g.
socio-economic variables.
Further work, some of it under way, is required in several areas, some of which have al-
ready been mentioned. Firstly, the parametric frailty models used in this paper need to be
revisited with a view to fitting non-parametric functions for the baseline forces of infection
λ0j(x) (j = 1, 2) and the age-dependent trajectories hj(x) (j = 1, . . . , q). In the present
paper, we restricted ourselves to the use of the Gamma and inverse Gaussian distribution to
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model the frailties. In different settings other frailty distributions might be more applicable.
For example, for sexually transmitted diseases, in which heterogeneity could be represented
by number of sexual partners, discrete frailty distributions (such as the Poisson) may be
appropriate.
Secondly, frailties are specific to an individual and for some infections (e.g. sexually trans-
mitted diseases) individual behaviour is of utmost importance. But, for example, for res-
piratory infections in the home, the infection probability increases with household size and
we could expect associations due to variation in household size. Likewise, other small scale
social structure may be important in the transmission of some infections. Unfortunately,
data sufficiently detailed to allow studying such effects directly are very seldom collected,
and in any case are unlikely to exhaust the myriad sources of heterogeneity which are likely
to play a role in transmission. The heterogeneity that can be quantified using the approach
of the present paper may in some sense be regarded as averaging over such effects.
Thirdly, individual heterogeneity may have the effect of increasing the estimates of the
following two key epidemiological parameters: the basic reproduction number R0 and the
critical immunization threshold πc = 1 − R−1

0 . For example, if there is heterogeneity due
to differences in the propensity to make contacts, then R0 is inflated by a factor involving
1 + var(U(x)). The impact of individual heterogeneity on R0 and πc for various infections
has been investigated by Farrington et al. (2013). Finally, we only considered infections
with lifelong immunity, that is, susceptible-infectious-recovered (SIR) infections (Vynny-
cky and White, 2010). It would be of interest to apply the methodology presented in this
paper to susceptible-infectious-susceptible (SIS) infections which confer no immunity or to
susceptible-infectious-recovered-susceptible infections conferring temporary immunity.

Supporting Information

Additional supporting information may be found in: ‘Supporting information for “Time-
varying frailty models and the estimation of heterogeneities in transmission of infectious
diseases”’.
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1-component age-dependent frailty model (3)

Z ∼ Γ(θ, 1/θ)

The three probabilities (8)–(10) are

π00(x) = exp
{
H1(x) + H2(x)− Λ01(x)− Λ02(x)

}[
1 +

H1(x) + H2(x)

θ

]−θ

,

π01(x) = exp
{
H1(x)− Λ01(x)

} [
1 +

H1(x)

θ

]−θ

− π00(x) ,

π10(x) = exp
{
H2(x)− Λ02(x)

} [
1 +

H2(x)

θ

]−θ

− π00(x) ,

where Hj(x) =
∫ x

0
h(t)λ0j(t) dt (j = 1, 2).
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Z ∼ InvG(1, θ)

The three probabilities (8)–(10) are

π00(x) = exp
{
H1(x) + H2(x)− Λ01(x)− Λ02(x)

}

× exp
{

θ − [
θ2 + 2θ(H1(x) + H2(x))

]1/2
}

,

π01(x) = exp
{
H1(x)− Λ01(x)

}
exp

{
θ − [

θ2 + 2θH1(x)
]1/2

}
− π00(x) ,

π10(x) = exp
{
H2(x)− Λ02(x)

}
exp

{
θ − [

θ2 + 2θH2(x)
]1/2

}
− π00(x) .

Additive family (5) with q = 2

Z1 ∼ Γ(θ1, 1/θ1) and Z2 ∼ Γ(θ2, 1/θ2)

The three probabilities (8)–(10) are

π00(x) = exp
{
H1

1 (x) + H1
2 (x) + H2

1 (x) + H2
2 (x)− Λ01(x)− Λ02(x)

}

×
[
1 +

H1
1 (x) + H2

1 (x)

θ1

]−θ1
[
1 +

H1
2 (x) + H2

2 (x)

θ2

]−θ2

,

π01(x) = exp
{
H1

1 (x) + H1
2 (x)− Λ01(x)

}[
1 +

H1
1 (x)

θ1

]−θ1
[
1 +

H1
2 (x)

θ2

]−θ2

− π00(x) ,

π10(x) = exp
{
H2

1 (x) + H2
2 (x)− Λ02(x)

}[
1 +

H2
1 (x)

θ1

]−θ1
[
1 +

H2
2 (x)

θ2

]−θ2

− π00(x) ,

where Hj
i (x) =

∫ x

0
hi(t)λ0j(t) dt (i, j = 1, 2).



3

Z1 ∼ InvG(1, θ1) and Z2 ∼ InvG(1, θ2)

The three probabilities (8)–(10) are

π00(x) = exp
{
H1

1 (x) + H1
2 (x) + H2

1 (x) + H2
2 (x)− Λ01(x)− Λ02(x)

}

× exp
{

θ1 −
[
θ2
1 + 2θ1(H

1
1 (x) + H2

1 (x))
]1/2

}

× exp
{

θ2 −
[
θ2
2 + 2θ2(H

1
2 (x) + H2

2 (x))
]1/2

}
,

π01(x) = exp
{
H1

1 (x) + H1
2 (x)− Λ01(x)

}

× exp
{

θ1 −
[
θ2
1 + 2θ1H

1
1 (x)

]1/2
}

exp
{

θ2 −
[
θ2
2 + 2θ2H

1
2 (x)

]1/2
}
− π00(x) ,

π10(x) = exp
{
H2

1 (x) + H2
2 (x)− Λ02(x)

}

× exp
{

θ1 −
[
θ2
1 + 2θ1H

2
1 (x)

]1/2
}

exp
{

θ2 −
[
θ2
2 + 2θ2H

2
2 (x)

]1/2
}
− π00(x) .

Multiplicative family (6) with q = 2

The three probabilities (8)–(10) are

π00(x) = exp
{
H1

1 (x) + H1
2 (x) + H2

1 (x) + H2
2 (x)−H1

12(x)−H2
12(x)− Λ01(x)− Λ02(x)

}

×K12(x) ,

π01(x) = exp
{
H1

1 (x) + H1
2 (x)−H1

12(x)− Λ01(x)
}×K1(x)− π00(x) ,

π10(x) = exp
{
H2

1 (x) + H2
2 (x)−H2

12(x)− Λ02(x)
}×K2(x)− π00(x) ,

where Hk
ij(x) =

∫ x

0
hi(t)hj(t)λ0k(t) dt (i, j, k = 1, 2) and

K12(x) = E
(
exp

{−U1

[
H1

1 (x) + H2
1 (x)−H1

12(x)−H2
12(x)

]

−U2

[
H1

2 (x) + H2
2 (x)−H1

12(x)−H2
12(x)

]

−U1U2

[
H1

12(x) + H2
12(x)

]})
,

K1(x) = E
(
exp

{−U1

[
H1

1 (x)−H1
12(x)

]− U2

[
H1

2 (x)−H1
12(x)

]− U1U2H
1
12(x)

})
,

K2(x) = E
(
exp

{−U1

[
H2

1 (x)−H2
12(x)

]− U2

[
H2

2 (x)−H2
12(x)

]− U1U2H
2
12(x)

})
.
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Supplementary Figure 1: Pointwise absolute deviances for the multinomial model and

its compound Dirichlet-multinomial counterpart applied to (i)

Toxoplasma and H. pylori, (ii) mumps and rubella, (iii) B19 and

CMV and (iv) B19 and H. pylori infection data (2-component

multiplicative model for (i) and (ii); 1-component model for (iii)

and (iv)).


