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Abstract This article is concerned with the analogue of copulas for circular distri-

butions, which we call ‘circulas’. We concentrate on one particular class of circulas,

which is pre-existing but not studied in such explicit form or detail before. This class

is appealing in many ways but does not necessarily result in especially attractive

bivariate circular models for arbitrary non-uniform marginals. A major exception

to this is an elegant bivariate wrapped Cauchy distribution previously proposed and

developed by two of the current authors. We look both at properties of the circulas

themselves, including their density behaviour, distribution function, and dependence

measures, and at properties of various distributions based on these circulas by trans-

formation to non-uniform marginal distributions. We consider inference for the latter

distributions and present two applications of them to modelling data. We concentrate

mostly on the bivariate case, but also briefly consider extension to the multivariate

case.
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1 Introduction

This paper concerns the circular analogues of copulas. The latter are, of course, bivariate

and multivariate distributions for linear data, whose defining property is that they have

uniform univariate marginal distributions. Concentrating on the important bivariate case

for simplicity (until Section 6), any bivariate distribution for linear data can be decomposed

into its copula — which contains dependence information — and its marginals. In terms of

densities, a general bivariate density f can be written in terms of its copula density c and

its marginal density and distribution functions fX , fY , FX and FY as

f(x, y) = fX(x)fY (y) c(FX (x), FY (y)).

Joe (1997) and Nelsen (2010) are excellent introductions to this subject.

We are concerned with bivariate distributions for circular data, and especially with the

circular analogue of copulas which we propose to call ‘circulas’: these are bivariate (and

later, multivariate) distributions for circular data whose marginals are circular uniform

distributions. As above, a general bivariate circular density f — or a density on the unit

torus — can be written in terms of its circula density c and its marginal circular density

and distribution functions f1, f2, F1 and F2 as

f(θ1, θ2) = 4π2f1(θ1)f2(θ2) c(2πF1(θ1), 2πF2(θ2)). (1.1)

In general, the marginal distribution functions can be defined from arbitrary starting points

on the circle. Circulas differ from rescaled linear copulas in also requiring periodicity:

c(θ1 ± 2kπ, θ2 ± 2lπ) = c(θ1, θ2), k, l = 0, 1, ... .

This paper is actually concerned with one particular construction of circulas, which

can be found elsewhere (see below) but which has not previously been given a unified

explicit treatment. In the course of this paper, we will point out both its advantages and

its limitations. This circula construction is extremely simple. Let Θ1 follow the circular

uniform distribution. Then, for any constant angle ω, Θ1+ω also follows the circular uniform

distribution. Now let Ω follow a circular distribution with density g, say, independently of

Θ1. Then, by dint of the previous result, Θ2 = Θ1 + Ω also follows the circular uniform

distribution. (See also Mardia & Jupp, 1999, p. 36.) It follows that (Θ1,Θ2) follows a

bivariate circular distribution with circular uniform marginals, that is, a circula. Moreover,

the conditional density of Θ2|Θ1 = θ1 is g(θ2 − θ1) which, combined with the uniform

marginal distribution of Θ1, means that the circula density is

c1(θ1, θ2) =
1

2π
g(θ2 − θ1). (1.2)

A similar argument based on Θ2 = Ω − Θ1 yields the complementary circula density

c−1(θ1, θ2) =
1

2π
g(θ2 + θ1) = c1(2π − θ1, θ2). (1.3)
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The two can be written in one as

cq(θ1, θ2) =
1

2π
g(θ2 − qθ1), (1.4)

where q ∈ {−1, 1} is non-random; this is the density of the joint distribution of Θ1 and

Θ2 = Ω + qΘ1.

When combined with (1.1), (1.4) yields

f(θ1, θ2) = 2πf1(θ1)f2(θ2) g(2π(F2(θ2) − qF1(θ1))). (1.5)

For clarity, concreteness and convenience, for non-uniform marginals, we will specifically

associate with (1.5) the particular circular distribution function definition

F1(θ1) =

∫ θ1

µ1

f1(φ)dφ (1.6)

where µ1 denotes the location parameter of f1 and µ1 ≤ θ1 ≤ µ1 +2π (and similarly for F2).

So, by construction, (1.5) has marginals with densities f1(θ1) and f2(θ2) and conditional

densities which can be immediately written down, e.g.

f(θ2|θ1) = 2πf2(θ2) g(2π(F2(θ2) − qF1(θ1))).

We will sometimes call g the ‘binding’ density.

Such distributions for bivariate circular data can first be found in four papers in the late

1970s: as models under which a proposed angular correlation measure is calculated, first

for g von Mises and then for general g in form (1.2) in Johnson & Wehrly (1977); when g

is cardioid, again in form (1.2), as the transition density for the angular part of a bivariate

Markov point process expressed in polar co-ordinates, in Isham (1977); in a hybrid version

of form (1.5) with q = 1 in Johnson & Wehrly (1978), where Θ1 is replaced by a linear

random variable; while (1.5) itself appears in Wehrly & Johnson (1980), where its role in

Markov processes is suggested (without reference to Isham, 1977) and some properties are

given when g is the von Mises density. (Wehrly & Johnson employed the versions of F1 and

F2 starting from 0 rather than µ1 and µ2.) So long ago, the term ‘copula’ was not in vogue

so was not used, but the copula-like role of (1.4) has been explicitly recognised in much

more recent publications looking at special cases — in both g and marginals — of (1.5):

Shieh & Johnson (2005), Fernández-Durán (2007), Kato (2009), Shieh et al. (2011), Garćıa-

Portugués, Crujeiras & González-Manteiga (2013) and Kato & Pewsey (2013). Alfonsi &

Brigo (2005) utilise much the same ‘periodic copula’ construction, but for use as ordinary

copulas for linear data; Perlman & Wellner’s (2011) ‘circular copulas’ are also ordinary

copulas, derived from distributions supported on the disc (Jones, 2013). Our purpose in this

paper is to give a more focussed account of the circulas with density (1.4), the distributions

with densities of form (1.5) arising from them, and their extensions, per se.

Properties of circulas themselves constitute Section 2. These include their density be-

haviour, distribution function, and dependence measures. We move on, in Section 3, to

consider properties of various distributions based on these circulas by transformation to
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non-uniform marginal distributions. In that section, the following notation will be used for

special cases of the distribution with density (1.5):

f1−f2−g(q, µ1, ρ1 or κ1, µ2, ρ2 or κ2, µg, ρg or κg). (1.7)

Here, each of f1, f2 or g will be replaced by abbreviations such as wC for wrapped Cauchy

or vM for von Mises (as, for example, in vM-vM-wC), the µ’s are the corresponding location

parameters and the ρ’s, as mean resultant lengths, or κ’s, in the von Mises case, are the

corresponding concentration parameters. In Section 3.1, disadvantages of some of these

distributions will become apparent. In the remainder of Section 3, we consider distribution

function and dependence measures for these distributions, together with random variate

generation. Section 4 is devoted to maximum likelihood estimation of parameters and

goodness-of-fit testing. Section 5 gives two applications of these distributions to data. In

Section 6, consideration is given to extending bivariate circulas to the multivariate case,

and the paper closes with a brief discussion in Section 7.

2 Properties of the circula with density (1.4)

2.1 Circula densities

If g is itself chosen to be the circular uniform density, then the circula of interest reduces

to the independence circula for which

cI(θ, φ) =
1

4π2
.

Otherwise, the circula densities (1.4) have linear contours parallel to the qπ/4, or q×45◦,

diagonal. If (the polar representation of) the density g is unimodal with mode at µg, the

circula density is maximal at every point of the diagonals θ2 = µg + qθ1 ± 2πk, k = 0, 1, ... .

Let ρg denote the mean resultant length of the distribution with density g. Then, ‘tightness’

to the diagonal is determined by the value of ρg. This is illustrated in linearised form in

Figure 1 when g is the wrapped Cauchy density with µg = 0. For much consideration of

what happens to density contours on transformation to non-uniform marginals, see Section

3.1.

2.2 Circula distribution functions

For −2π ≤ ω ≤ 4π, define

W (ω) =

∫ ω

0

∫ b

0

g(a) da db.

Setting the origin of the circula distribution function Cq to (0, 0), we find, after a certain

amount of manipulation, that, rather beautifully,

Cq(θ, φ) =
q

2π
{W (φ) + W (−qθ)− W (φ − qθ)} , 0 ≤ θ, φ ≤ 2π. (2.1)
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Figure 1: Examples of cq using wrapped Cauchy g with µg = 0 (a) ρg = 0.9, q = 1;

(b) ρg = 0.6, q = −1. The dotted diagonal line in each plot identifies those (θ1, θ2)

combinations for which the density is maximal. In both cases, the contours in the

corners are parts of the periodic repetitions of the central bands.
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Figure 2: Examples of Cq using: (a) cardioid g with ρ = 0.5, q = 1; (b) cardioid g

with ρ = 0.5, q = −1; (c) wrapped Cauchy g with ρg = 0.9, q = 1; (d) wrapped

Cauchy g with ρg = 0.6, q = −1.
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It is straightforward to confirm that Cq has the correct margins and ∂2Cq(θ, φ)/(∂θ∂φ) =

cq(θ, φ)≥ 0 given by (1.4).

Most non-trivial g’s do not have tractable W functions. An exception is the cardioid

density employed by Isham (1977), for which g(ω) = (2π)−1(1 + 2ρ cos ω), 0 ≤ ρ ≤ 1
2
,

W (ω) = (2π)−1
{

1
2
ω2 + 2ρ(1 − cos ω)

}

and

Cc(θ, φ) =
1

4π2
[θφ + 2qρ{1 − cos θ − cos φ + cos(φ − qθ)}] .

Of course, this reduces to the independence case when ρ = 0 so that g is itself uniform and

C1(θ, φ) =
θφ

4π2
.

The cardioid-based circula distribution functions corresponding to ρ = 1/2, q = ±1 are

shown in Figure 2(a) and 2(b); the wrapped Cauchy-based circula distribution functions

corresponding to the circula density functions shown in Figure 1, calculated using one-

dimensional numerical integration of the explicit wrapped Cauchy distribution function,

are shown in Figure 2(c) and 2(d).

2.3 The dependence parameter

It is conceptually clear that the concentration of g controls the dependence of cq: when g is

highly concentrated, circula dependence is high; when g is more diffuse, circula dependence is

low. The mean resultant length, ρg =
√

α2
g + β2

g where αg = Eg(cos Ω) and β = Eg(sin Ω),

measures the concentration of g; the following paragraphs quantify the role of ρg as the

dependence parameter of cq.

We consider three main pre-existing dependence measures for circular data, namely

those of Johnson & Wehrly (1977), Jupp & Mardia (1980) and Fisher & Lee (1983). For

circulas with density cq, the elements of all three come out straightforwardly. Following

Section 3.8 of Kato & Pewsey (2013) and noting that E(cos Θ1) = E(sin Θ1) = E(cos Θ2) =

E(sin Θ2) = 0 by circular uniformity, all the dependence measures depend on functions of

the 2 × 2 matrices Σkl = E(XkXT
l ), k, l = 1, 2, where X1 = (cos Θ1, sin Θ1)

T , X2 =

(cos Θ2, sin Θ2)
T . Because Σ11 and Σ22 depend only on the circular uniform marginals, it

is easy to see that Σ11 = Σ22 = 1
2
I2 where I2 is the 2 × 2 identity matrix. Only slightly

more difficult calculations involving basic trigonometric identities and the general relation

Θ2 = Ω + qΘ1 result in

Σ12 =
1

2

(

αg βg

−qβg qαg

)

.

The only signed dependence measure for bivariate circular data appears to be that of

Fisher & Lee (1983) which, for a circula, is

ρFL = detΣ12/
√

detΣ11detΣ22,
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and so, for the circula with density cq, is

ρFL = q(α2
g + β2

g) = qρ2
g.

This result is Example 2 of Fisher & Lee (1983). Also, the unsigned dependence measures

of Johnson & Wehrly (1977) and Jupp & Mardia (1980) depend on

S = Σ−1
11 Σ12Σ

−1
22 ΣT

12

which reduces to S = ρ2
gI2. Thus, Johnson & Wehrly’s dependence measure, ρJW , which is

the square root of the largest eigenvalue of S, is ρg, as Johnson & Wehrly (1977, Example

7.2) obtain for the case of q = 1. Also, Jupp & Mardia’s dependence measure, ρJM , which

is the trace of S, is 2ρ2
g. The key observations here, of course, are the ways in which all

three dependence measures relate to ρg, justifying its role as the dependence parameter of

the circula with density cq.

2.4 Local dependence

Justifications for the local dependence function γf (x, y) = ∂2logf(x, y)/∂x∂y

(Holland and Wang, 1987, Jones, 1996) transfer immediately to the bivariate circular case.

The local dependence function is particularly simple for the class of circulas under consid-

eration:

γcq
(θ1, θ2) = −q(log g)′′(θ2 − qθ1).

Local dependence therefore follows the circula’s contours. For unimodal g, (log g)′′ is typ-

ically negative at and near the mode, and the local dependence function correspondingly,

and reasonably, shares its sign with q at and near the highest parts of the circula.

If desired, another, signed, scalar dependence measure can be obtained by averaging γcq

with respect to the circula. The result is readily seen to be

γ = q

∫ 2π

0

{g′(φ)}2

g(φ)
dφ = qIg, (2.2)

say. Since Ig, the Fisher information for location of g, is positive, like ρFL, γ has the

sign of q. Its magnitude depends on ρg, and not µg, and can be expected to increase

with increasing ρg (higher concentration ⇒ more information). For example, for cardioid

g, Ig = 1 −
√

1 − 4ρ2, for wrapped Cauchy g, Ig = 2ρ2
g/(1 − ρ2

g)
2, and for von Mises g

with concentration parameter κ and mean resultant length A(κ) (Mardia & Jupp, 1999,

(3.5.31)), Ig = κA(κ).
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3 Properties of densities of the form (1.5)

3.1 Density shapes

First, if the binding density is uniform, the marginals are independent and, of course,

f(θ1, θ2) = f1(θ1)f2(θ2). An example can be seen in Figure 6(a) to follow.

The point (µ1, µ2), where µi is the location parameter of the marginal distribution Fi,

i = 1, 2, will be of particular interest in the rest of this subsection. By (1.6), F1(µ1) =

F2(µ2) = 0 and the argument of g in (1.5) when θi = µi, i = 1, 2, will also be zero whatever

the value of q. Now, if g is maximal at µg = 0 and f1 and f2 are maximal at µ1 and µ2,

respectively, then (1.5) will be maximal at (µ1, µ2).

Using notation (1.7), this is illustrated for the wC-wC-wC(q, µ1, ρ1, µ2, ρ2, µg, ρg), vM-

vM-vM(q, µ1, κ1, µ2, κ2, µg, κg) and vM-vM-wC(q, µ1, κ1, µ2, κ2, µg, ρg) families by the first

rows of Figures 3–5. These distributions all have µg = 0. The densities in the first row

of Figure 3 are examples of the bivariate wrapped Cauchy (bwC) distribution proposed

by Kato & Pewsey (2013) (see Figure 1 of that paper for many more examples). These

densities can be proved to be unimodal, with mode at (µ1, µ2). They also have many other

attractive properties including, remarkably, wrapped Cauchy conditional distributions, as

well as wrapped Cauchy marginals and binding distribution.

Except for the case wC-wC-wC(q, µ1, ρ1, µ2, ρ2, 0, ρg), the distributions in Figures 3–5

can be bimodal. This unattractive feature is not marked in the wC-wC-wC (bwC) case, but

can be very marked in the vM-vM-vM case, with vM-vM-wC a little less so. Nevertheless,

as can be seen in the first row of Figure 4, for families of distributions with µg = 0 and

more than one mode, (µ1, µ2) is the major mode.

So, by using (1.6) to define the marginal distribution functions, and with the choice

µg = 0, the roles played by the parameters q, µ1, ρ1 or κ1, µ2, ρ2 or κ2 and ρg or κg are

all clear-cut. As is evident from the first rows of Figures 3–5, the densities obtained are

2-fold symmetric when rotated (through 2π/2 = π radians) about (µ1, µ2). Indeed, it can

be shown that if f1, f2 and g are symmetric about µ1, µ2 and 0, respectively, then density

(1.5) is 2-fold symmetric when rotated about (µ1, µ2 + π), (µ1 + π, µ2) and (µ1 + π, µ2 + π)

as well as (µ1, µ2). The densities are not, in general, reflectively symmetric.

Setting µg = π (rather than µg = 0) results in densities that are still 2-fold symmetric

when rotated about (µ1, µ2), but which (if ρg 6= 0) are bimodal; (µ1, µ2) is not one of the

modes, but appears to be at a saddlepoint in between them. This is illustrated by the second

rows of Figures 3–5. Using choices of µg other than 0 or π produces densities that (when

ρg 6= 0) are no longer 2-fold symmetric when rotated about (µ1, µ2). Moreover, (µ1, µ2)

is not a mode nor saddlepoint, but some apparently arbitrary point between modes (when

ρg 6= 0). The value of µg also determines the orientation of asymmetry. These features

are illustrated by the panels in the third rows of Figures 3–5. (For a given panel letter,

the distributions represented in the three figures have marginal and binding densities with

identical concentration values.)

The rather unappealing densities of Figure 4 are the extensions of the bivariate von

Mises densities of Shieh & Johnson (2005) to q = −1. Some examples of their densities
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Figure 3: Contour plots of bwC(−1, π/2, 0.6, π, 0.8, µg, ρg) densities with: first row,

µg = 0; second row, µg = π; third row, µg = 5. From left to right, the columns

correspond to: ρg = 0.3, ρg = 0.6 and ρg = 0.9. The cross in each panel identifies

(µ1 = π/2, µ2 = π).
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Figure 4: Contour plots of bvM(−1, π/2, 1.509, π, 2.862, µg, κg) densities with: first

row, µg = 0; second row, µg = π; third row, µg = 5. From left to right, the columns

correspond to: κg = 0.629 (ρg = 0.3), κg = 1.509 (ρg = 0.6) and κg = 5.291 (ρg = 0.9).

The cross in each panel identifies (µ1 = π/2, µ2 = π).
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Figure 5: Contour plots of vMvMWC(−1, π/2, 1.509, π, 2.862, µg, ρg) densities with:

first row, µg = 0; second row, µg = π; third row, µg = 5. From left to right, the

columns correspond to: ρg = 0.3, ρg = 0.6 and ρg = 0.9. The cross in each panel

identifies (µ1 = π/2, µ2 = π).
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Figure 6: Contour plots of bvM(1, π, 3, π, 3, µg, κg) densities. In the top row, µg = 0

and: (a) κg = 0; (b) κg = 1; (c) κg = 4; (d) κg = 7. In the bottom row: (e) µg = π

and κg = 1; (f) µg = 3π/2 and κg = 1; (g) µg = 3π/2 and κg = 4; (h) µg = 3π/2 and

κg = 7.

(vM-vM-vM or bvM distributions) with q = 1 are shown in Figure 6. In this figure, we

vary µg and κg while keeping the marginal (von Mises) parameters fixed. The panels in

the top row are of the same densities as those in Figure 2 of Shieh & Johnson (2005) and

show that their contour plots are insufficiently detailed to fully represent the true forms of

the densities. They also reveal that the condition µg = µ1 − µ2 conjectured by Shieh &

Johnson (2005) does not, in fact, assure unimodality. Without going into further detail,

the message from Figure 6 is clear: bvM distributions can be unimodal, bimodal or even

trimodal. (In our numerical investigations involving symmetric unimodal marginals and g,

we have not come across densities with more than three modes.) It seems that von Mises

marginals might be accommodated in a little less multimodal manner by combining them

with a wrapped Cauchy binding density (i.e. the vM-vM-wC model).

Here is another consequence for the role of (µ1, µ2) when µg = 0. Suppose that in the

wC-wC-wC(q, µ1, ρ1, µ2, ρ2, 0, ρg) model, we let ρ1, ρ2 → 0. For small ρ1, ρ2, this model

is close to the circula with wrapped Cauchy g, yet (µ1, µ2) must be a point at which the

circular density is maximal; but, when µg = 0, the circula density is maximal on the diagonal

θ2 = qθ1 (Section 2.1). The limiting circular density is, however, not the one with µg = 0

but the one with µg = µ2 − qµ1. This effect is illustrated in Figure 7. So we see an implicit
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Figure 7: Contour plots of bwC(1, π/2, ρ1 → 0, π, ρ2 → 0, 0, ρg) densities with: (a)

ρg = 0.6; (b) ρg = 0.99. The dotted diagonal line in each plot identifies those (θ1, θ2)

combinations for which the density is maximal. The cross in each panel identifies the

point (π/2, π).

effect akin to that of taking µg 6= 0 in the circula case after all.

The above considerations lead us to a considerable preference for setting µg = 0 in

model (1.5) (as well as for the bwC distribution of those we have considered).

3.2 Distribution function in terms of circula

Provided we parallel the univariate marginal case and define

F (θ1, θ2) =

∫ θ1

µ1

∫ θ2

µ2

f(φ1)f(φ2)dφ2dφ1, µ1 ≤ θ1 ≤ µ1 + 2π, µ2 ≤ θ2 ≤ µ2 + 2π,

then it is easily seen that

F (θ1, θ2) = Cq(F1(θ1), F2(θ2)), µ1 ≤ θ1 ≤ µ1 + 2π, µ2 ≤ θ2 ≤ µ2 + 2π.

3.3 Dependence, global and local

The scalar dependence measures of Section 2.3 and the averaging of the local dependence

function as in Section 2.4 can both be applied to densities of form (1.5) directly. Formulae for

the bwC distribution can be found in Kato & Pewsey (2013). Alternatively, as in the linear

case, one can proclaim the values of the dependence measures obtained from the circula

to apply to densities (1.5) too, providing alternative ‘margin-free’ dependence measures for

those distributions.
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Re local dependence, we observe that patterns of signs of γf (x, y) are reflected in pat-

terns of signs of γc(u, v), albeit distorted by marginal transformation. In particular, for

example, γf (x, y) > 0 for all x, y if and only if γc(u, v) > 0 for all 0 < u, v < 1. (In the

ordinary copula case, this corresponds to a TP2 density, e.g. Joe, 1997, Section 2.1.5.)

3.4 Random variate generation

There was no specific subsection of Section 2 on random variate generation for the circula

(1.4) per se, since it is immediate using the construction given in the Introduction: generate

Θ1 from the circular uniform distribution, Ω from the distribution with density g, and set

Θ2 = Ω + qΘ1.

A basic algorithm for random variate generation from the density (1.5) is also im-

mediate if marginal distributions allow generation by inversion of the distribution func-

tion: given (Θ1,Θ2) generated from (1.4) as above, then Θ∗

1 = F−1
1 (Θ1/2π) (mod 2π),

Θ∗

2 = F−1
2 (Θ2/2π)(mod 2π) follow (1.5).

Minor modifications of this algorithm allow speed-ups in some situations, by avoiding

one of the distribution function inversions. A first version is:

Algorithm A1:

simulate Θ∗

1 from f1 and Ω from g, independently;

set Θ∗

2 = F−1
2

{(

qF1(Θ
∗

1) + Ω
2π

)

(mod 1)
}

(mod2π).

(This is essentially the algorithm used by Shieh & Johnson, 2005, Section 2.2, in the bvM

case, although we can implement this algorithm much more efficiently.) A second version

is:

Algorithm A2:

simulate Θ∗

2 from f2 and Ω from g, independently;

set Θ∗

1 = F−1
1

[{

q
(

F2(Θ
∗

2) −
Ω
2π

)}

(mod 1)
]

(mod 2π).

Examples of f1 or f2 for which these algorithms would be advantageous include the sine-

skewed wrapped Cauchy distribution (Umbach & Jammalamadaka, 2009, Abe & Pewsey,

2011) and many wrapped distributions.

4 Inference

4.1 Maximum likelihood estimation

Let τ = (τ1, τ2, τg), where τ1 is the vector of (typically two) parameters of f1, τ2 that of

f2, and τg is the single, concentration, parameter of g. (As discussed in Section 3.1, we
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take µg = 0.) For a random sample of size n from the distribution with density (1.5),

(θ1,1, θ2,1), ..., (θ1,n, θ2,n), the log-likelihood function is given by

ℓ(τ) = n log(2π) +

n
∑

i=1

log(f1(θ1,i)) +

n
∑

i=1

log(f2(θ2,i)) +

n
∑

i=1

log(g(2π(F2(θ2,i) − qF1(θ1,i)))).

(4.1)

In general, the first two summations in (4.1) will be functionally related to the third in terms

of the parameters, so there will be no closed-form solutions for the maximum likelihood

estimates and numerical methods must be used to maximise (4.1). The constant q = ±1

determines whether the dependence between Θ1 and Θ2 is positive (q = 1) or negative

(q = −1). Thus, q is a model choice indicator rather than a conventional parameter. In

most applications, the form of any dependence, and hence the value of q, should be obvious

from a consideration of a scatterplot of the data. If not, (4.1) can be maximised twice, with

q = 1 and q = −1, respectively, and the maximised values compared in order to identify

the maximum likelihood solution.

Our experience of maximising (4.1) has been based on the use of R’s optim function

together with its L-BFGS-B implementation of the optimisation method of Byrd et al. (1995)

which allows for box constraints. Another one of optim’s arguments (hessian) can be used

to obtain a numerical approximation to the Hessian matrix. The latter can be inverted to

obtain an estimate of the observed information matrix. In general, the maximum likelihood

estimates of the parameters of the marginal distributions provide useful starting values

when maximising the full log-likelihood (4.1). We also employ multiple starting values in

an attempt to ensure that the global maximum likelihood solution is identified. We have

not felt it worthwhile, in this bivariate case, to pursue alternative, composite likelihood,

strategies like that of Joe (1997, Chapter 10) for linear copula models.

Shieh & Johnson (2005) and Kato & Pewsey (2013) discuss maximum likelihood based

inference for the bvM and bwC models discussed in Section 3.1. They consider point

estimation, present results which can be used to construct large-sample confidence regions,

and provide likelihood-ratio tests for exploring the null hypothesis of independence. Their

approaches can be extended to other cases of (4.1) in obvious ways. Alternatively, profile log-

likelihood and parametric bootstrap methods can be used to construct confidence intervals.

The latter will be the more reliable for small-sized samples.

4.2 Goodness-of-fit testing

The independence of Θ1 = 2πF1(Θ
∗

1) and Ω = 2π(F2(Θ
∗

2) − qF1(Θ
∗

1)) provides a means of

exploring the goodness-of-fit of density (1.5) to a random sample, (θ1,1, θ2,1), ..., (θ1,n, θ2,n),

of bivariate circular data.

Suppose, first, that, under the null hypothesis, the density is fully specified. Write

ωi = 2π(F2(θ2,i) − qF1(θ1,i)), i = 1, ..., n. As Θ1 and Ω are independent, if the data

do come from the case of (1.5) specified under the null hypothesis, then the values of

{2πF1(θ1,i), 2πG(ωi)}, i = 1, ..., n, will be uniformly distributed on the torus; here, G is
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the distribution function associated with g. Various tests for toroidal uniformity have been

proposed in the literature (see Jupp, 2005, 2009, and references therein), the simplest being

Wellner’s (1979) extension of the Rayleigh test for isotropy.

In practice, the parameters of (1.5) will be unknown and must be estimated from the

data. If the maximum likelihood approach of Section 4.1 is employed, goodness-of-fit tests

can be based instead on the values of {2πF̂1(θ1,i), 2πĜ(ω̂i)}, i = 1, ..., n, where the hats

denote evaluation at the maximum likelihood solution. Such values can be tested for toroidal

uniformity using the tests referred to in the previous paragraph. However, the sampling

distributions of those tests will no longer be the same as under the fully specified scenario.

As a generally applicable method, the p-value of a chosen test can be estimated using a

parametric bootstrap approach. A large number, B, of parametric bootstrap samples of

size n are simulated from the distribution fitted to the original sample. For each such

sample, the parameters of (1.5) are estimated using maximum likelihood (resulting in tildes

instead of hats) and the values of {2πF̃1(θ1,i), 2πG̃(ω̃i))}, i = 1, ..., n, and the test statistic

computed. The p-value of the test is estimated by the proportion of the (B + 1) values of

the test statistic that are at least as extreme as that for the original data. This approach

incorporating Wellner’s (1979) test is applied in the illustrative examples of the next section.

5 Examples

5.1 Texas wind data

Kato (2009) introduced a data set of n = 30 pairs of wind directions measured each day at

6:00 and 7:00 from June 1 to June 30, 2003, in radians, at a weather station in Texas coded as

C28-1. We treat these measurements as a set of independent bivariate data. Within pairs,

one would expect the measurements to be strongly related as the time between the two

measurements is just an hour. It is, though, natural to think of these data as a bivariate

time series. However, time series plots and sample autocorrelation functions (Fisher &

Lee, 1983, 1994) for the series of wind directions at 6:00 and 7:00 separately (not shown)

provide little evidence of dependence between successive observations in the separate series.

(Sample autocorrelations at lag 10 for wind directions at 6:00 and lags 1 and 2 for 7:00

are significantly different from zero, according to 95% confidence bounds obtained using

1000 randomisations of the original data. However, all these autocorrelations remain very

small and arguably not practically significant; for instance, the lag 1 autocorrelation is

just 0.206.) It seems that the time gap of 24 hours between pairs of recordings makes

the convenient assumption of independence of the pairs reasonable. A scatterplot of the

measurements appears in each of the panels of Figure 8. Most of the points in the scatterplot

indeed indicate a fairly strong positive relationship between pairs of observations. (A more

sophisticated analysis might allow for any slight dependence. One might also contemplate

potential bimodality but any suggestion of such in this small dataset is far from conclusive.

Moreover, other data and other interests might, of course, relate to a full univariate time

series of wind directions at C28-1 at all times through the day.)
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Table 1: Maximum likelihood estimates, maximised log-likelihood value (ℓmax), and

the p-value for the bootstrap version of the goodness-of-fit test based on the use

of Wellner’s (1979) test for toroidal uniformity and B = 99 parametric bootstrap

samples (pg-o-f), for the fits to the C28-1 Texan wind direction data of the bwC, bvM

and vM-vM-wC models with µg = 0, distribution function as defined in (1.6), and

q = 1.

Model µ̂1 κ̂1/ρ̂1 µ̂2 κ̂2/ρ̂2 κ̂g/ρ̂g ℓmax pg-o-f

bwC(1, µ1, ρ1, µ2, ρ2, 0, ρg) 2.22 0.48 2.27 0.52 0.73 −64.93 0.30

bvM(1, µ1, κ1, µ2, κ2, 0, κg) 2.00 1.12 2.10 1.33 2.18 −71.13 0.03

vM-vM-wC(1, µ1, κ1, µ2, κ2, 0, ρg) 1.93 1.05 2.01 1.16 0.75 −65.99 0.02
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Figure 8: Contour plots for the bwC (left), bvM (centre) and vM-vM-wC (right)

densities fitted using maximum likelihood to the 30 pairs of wind directions measured

at 6:00 (θ1) and 7:00 (θ2) at the C28-1 Texan weather station.
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Table 2: Maximum likelihood estimates and maximised log-likelihood value (ℓmax) for

the fits to the 678 unrounded pairs of pre-earthquake direction of steepest descent

(θ1) and direction of lateral ground movement (θ2) values of the two-component bwC,

bvM and vM-vM-wC mixture models.

Model µ̂1 κ̂1/ρ̂1 µ̂2 κ̂2/ρ̂2 κ̂g/ρ̂g p̂ ℓmax

bwC(1, µ1, ρ1, µ2, ρ2, 0, ρg)1 0.73 0.27 0.72 0.25 0.57 0.78

bwC(−1, µ1, ρ1, µ2, ρ2, 0, ρg)2 5.16 0.50 3.20 0.48 0.14 −2206.71

bvM(1, µ1, κ1, µ2, κ2, 0, κg)1 0.70 0.37 0.67 0.37 3.45 0.57

bvM(−1, µ1, κ1, µ2, κ2, 0, κg)2 6.19 0.90 2.37 0.51 0.31 −2202.71

vMvMwC(1, µ1, κ1, µ2, κ2, 0, ρg)1 0.53 0.51 0.52 0.50 0.59 0.79

vMvMwC(−1, µ1, κ1, µ2, κ2, 0, ρg)2 5.70 0.95 2.88 1.84 0.25 −2199.72

Tacitly assuming independence between distinct pairs of observations, Kato (2009) fitted

three six-parameter bivariate circular distributions with von Mises marginals to these data,

one of them being the bvM model with µg 6= 0 and the classical definition of the distribution

function starting at zero (i.e. not (1.6)). The other two distributions were proposed in Kato

(2009) and SenGupta (2004), respectively. Kato (2009) did not consider formal approaches

to assessing the goodness-of-fit of the three fitted bivariate von Mises models. We fitted the

bwC, bvM and vM-vM-wC models, with µg = 0 and the distribution function as defined in

(1.6), to the data. The results obtained for the three fits are presented in Table 1. Contour

plots of the fitted densities are superimposed upon scatterplots of the data in the panels

of Figure 8. The ℓmax and pg-o-f values indicate that the bwC model provides the superior,

and indeed only reasonable, fit to the underlying distribution of the data. Its ℓmax value is

also higher than those of all three six-parameter bivariate von Mises models considered by

Kato (2009).

5.2 Japanese earthquake data

In our second example, we consider data introduced by Hamada & O’Rourke (1992) and

analyzed in Rivest (1997) on the pre-earthquake direction of steepest descent (Θ1) and the

direction of lateral ground movement (Θ2) before and after, respectively, an earthquake

in Noshiro, Japan. Originally, observations at 763 different locations were recorded with

a number of the lateral ground movement measurements being rounded to 90◦ and 270◦,

and a few to 0◦ and 180◦. Removing the cases with rounded θ2-values reduces the sample

size to 678. A scatterplot of the data converted to radians appears in each of the panels of

Figure 9. The points in the scatterplot suggest that the underlying distribution is bimodal.

For geotectonic reasons, it is probably doubtful that distinct pairs of measurements are

independent. Nevertheless, here we analyze them assuming they are.
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Figure 9: Contour plots for the two-component bwC (left), bvM (centre) and vM-vM-

wC (right) mixture densities fitted using maximum likelihood to the 678 unrounded

pairs of pre-earthquake direction of steepest descent (θ1) and direction of lateral

ground movement (θ2).

We first fitted single-component bwC, bvM and vM-vM-wC models, with µg = 0 and

the distribution function as defined in (1.6), to the data. The results obtained were, as

expected, inadequate. The vM-vM-wC model was identified as providing the best fit of

the three. However, visual inspection of the corresponding contour plots superimposed

on the data (not shown) suggested that none of the models provides adequate fits to the

underlying distribution of the data; the major lack-of-fit corresponds to θ2-values in, roughly,

the interval (2, 4) radians, where a considerable amount of density seems to occur away from

the main mode in the data.

In a search for a better-fitting model, we next explored the fits of two-component bvM,

bwC and vM-vM-wC mixture models with mixing probability p as the multiple of the density

for the first component. All three mixture models have a total of 11 parameters. The results

obtained from fitting them are presented in Table 2. Contour plots of the fitted densities

are superimposed upon scatterplots of the data, shifted to a linear scale on which they can

be most fully appreciated, in the panels of Figure 9. The ℓmax values in Table 2 identify the

two-component vM-vM-wC mixture model as providing the best fit, and a visual inspection

of panel (c) of Figure 9 suggests that it does provide a respectable fit to the data. (We

have not been able to formally assess the goodness-of-fit of this more complicated model.)

According to that fitted model, around 80% of the data arise from a distribution centered

around the location (0.53, 0.52) (i.e. almost equal individual location parameter values)

with von Mises marginals with similar low concentrations that are moderately positively

correlated, and the remaining 20% arise from a second distribution, roughly orthogonal

to the first, centered around the location (5.70, 2.88) with more concentrated von Mises

marginals that are weakly negatively correlated. In the best fitting model(s), the second

mode is not especially pronounced against a non-negligible ‘background’ level, the whole

reflecting a distribution of data with a major mode together with something of a low-peaked
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‘plateau’ (towards the northwest of the mode, in the representations of Figure 9).

6 Multivariate extension

As in the linear case, the value of direct multivariate extensions of the circula is not especially

clear, given the attraction of pair copula constructions (Bedford & Cooke, 2002, Kurowicka

& Cooke, 2006, Aas et al., 2009) to more meaningfully model highly multivariate situations.

There would appear to be no impediment to employing the same techniques in the circula

case.

Nonetheless, here is our best suggestion for a direct d-variate extension of the circula

of interest, d ≥ 3. It has d separate — and hence somewhat constrained when d ≥ 4 —

dependence parameters. Start from the joint density of Φ and Θk = Ωk + qkΦ, k = 1, ..., d,

where Ωk follows density gk, k = 1, ..., d, independently of each other and of Φ which is

circular uniformly distributed; this is

cd+1(φ, θ1, ..., θd) =
1

2π

d
∏

k=1

gk(θk − qkφ).

This clearly has circular uniform univariate marginals by construction, as does the d-

dimensional marginal distribution of Θk = Ωk + qkΦ, k = 1, ..., d, which has the proposed

multivariate circula density

cd(θ1, ..., θd) =
1

2π

∫ 2π

0

d
∏

k=1

gk(θk − qkφ) dφ. (5.1)

The (k, l)th bivariate marginal of cd, k = 1, ..., d, l = 1, ..., d, k 6= l, is the joint distribu-

tion of

Θk and Θl = qklΘk + Ωl − qklΩk

where qkl = qkql ∈ {−1, 1}. This has circula density of form (1.4) given by

1

2π
hkl(θl − qklθk)

where

hkl(ω) =

∫ 2π

0

gk(φ)gl(ω + qklφ)dφ (5.2)

is the density of Ωl − qklΩk.

If gk is symmetric about 0 with mean resultant length ρk, k = 1, ..., d, then the (k, l)th

marginal copula density has mean resultant length and hence dependence parameter

ρkl = E{cos(Ωl − qklΩk)} = E(cos Ωl)E(cos Ωk) = ρkρl,

k = 1, ..., d, l = 1, ..., d, k 6= l. This is the dependence structure to which we referred at the

start of the second paragraph of this section.
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Particularly attractive versions of this construction arise when the g’s are all of the same

form and are closed under convolution, so that the h’s are of the same form as the g’s as

well. Wrapped stable distributions (Pewsey, 2008) and a new family of circular distributions

due to Kato & Jones (2013) are amongst those with the required property; both include

the wrapped Cauchy distribution, and the latter the cardioid distribution, as special cases.

So, for example, a d-dimensional version of the circula underlying a multivariate extension

of the bivariate wrapped Cauchy distribution of Kato & Pewsey (2013) would be based on

gk being a wrapped Cauchy distribution with location zero and mean resultant length ρk so

that hkl is the wrapped Cauchy distribution with location zero and mean resultant length

ρkρl. In this case the integration in (5.1) can be performed explicitly and it is possible to

express the density in closed form.

7 Discussion

In this paper, we have concentrated on a particular class of circulas not because arguments

for its use are entirely compelling but because, unlike the linear copula case, attractive

alternative constructions seem difficult to come by. The current class of circulas is certainly

attractive in its simplicity and tractability, but does not necessarily result in especially

attractive bivariate circular models for arbitrary non-uniform marginals. A major exception

to this arises in the case of wrapped Cauchy g binding wrapped Cauchy marginals, the

elegant bivariate wrapped Cauchy model of Kato & Pewsey (2013).

We envisage directly using distributions based on circulas in unimodal situations. Where

cluster structure is apparent (e.g. the example of Section 5.2), we naturally envisage using

mixtures of distributions based on circulas. A particularly important application in which

multimodal bivariate circular data arise is in understanding the structure of proteins (see

Mardia, 2013). There, ‘Ramachandran plots’ display data on the bivariate joint distribution

of dihedral angles. The example in Section 7 of Kato & Pewsey confirms that their bwC

distribution can appropriately model a component of such a mixture distribution. Further

evidence for whether there may be a role for mixtures of these circula-based distributions

as alternatives to the models currently employed (Mardia, 2013, Section 3.3) is a question

for future work.

Finally, we emphasise again that, for non-uniform marginals, it is recommended that the

location parameter of g be set to zero and that the marginal distribution functions be defined

as at (1.6). Given the positivity or negativity of the dependence in the data (reflected in

q = ±1), the resulting five-parameter models afford parsimony and interpretability; like

bivariate normal distributions on R
2, their parameters consist of two location parameters,

two concentration parameters and one parameter controlling the strength of the relationship

between the two variables.
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