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Abstract

The self-controlled case series method may be used to study the association between

a time-varying exposure and a health event. It is based only on cases, and it controls

for fixed confounders. Exposure and event histories are collected for each case over

a pre-defined observation period. The method requires that observation periods

should be independent of event times. This requirement is violated when events

increase the mortality rate, since censoring of the observation periods is then event-

dependent. In this paper, the method is extended to remove this independence

assumption, thus introducing an additional term in the likelihood that depends on

the censoring process. In order to remain within the case series framework in which

only cases are sampled, the model is reparameterized so that this additional term

becomes estimable from the distribution of intervals from event to end of observation.

The exposure effect of primary interest may be estimated unbiasedly. The age effect,

however, takes on a new interpretation, incorporating the effect of censoring. The

model may be fitted in standard loglinear modelling software; this yields conservative

standard errors. We describe a detailed application to the study of antipsychotics

and stroke. The estimates obtained from the standard case series model are shown

to be biased when event-dependent observation periods are ignored. When they are

allowed for, antipsychotic use remains strongly positively associated with stroke in

patients with dementia, but not in patients without dementia. A detailed simulation

study is included as Supplemental Material.

Key words: Censoring at random; Censoring completely at random; Conditional

Poisson regression; Epidemiologic study.



1 INTRODUCTION

The self-controlled case series method, or case series method for short, is used to

study the association between a time-varying exposure and a health event (Farring-

ton 1995; Farrington and Whitaker 2006). The method is derived from a risk-interval

Poisson cohort model, by conditioning on a pre-defined observation period, the expo-

sure history and the number of events observed over this observation period. A key

feature of the method is that only cases, namely individuals with one or more events,

need be sampled. A further property of the method is that it is self-controlled, ad-

justing implicitly for all fixed confounders acting multiplicatively on the hazard.

The method has been used in pharmacoepidemiology and in general epidemiology;

for a review of recent developments see Whitaker, Hocine and Farrington (2009).

The observation period for a given individual is an interval (a, b] over which

exposure status at each age t ∈ (a, b] and all events are recorded. (The case series

method also works for uncommon non-recurrent events, so in fact only the first

event need be recorded.) The observation period is generally determined using pre-

specified age and calendar time boundaries. In practice, observation may be censored

at some point c ≤ b, so that the individual is only observed over (a, c] j (a, b]. If the

individual is not censored before b, we formally set c > b and observe the individual

over (a, b]. Let b ∧ c denote the minimum of b and c. We call (a, b ∧ c] the actual

observation period and (a, b] the nominal observation period.

A key assumption of the case series method is that the actual observation period

for each individual is independent of event times. Thus censoring of observation

is independent of the individual’s event history, so that the subsequent history is

missing completely at random: we call this censoring completely at random (CCAR).

There are many circumstances in which this assumption is violated. The most

extreme violation is when the event is death: then the event time is equal to c. In
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less extreme situations, the event may increase mortality in the short term - as with

myocardial infarction (MI) and stroke, for example. Thus, some individuals who

become cases may die some time after the event, prior to the end of the nominal

observation period, as a result of the event having occurred. For these cases the

individual’s actual observation period is event-dependent. The subsequent history

is missing at random, but not completely at random: we call this censoring at

random (CAR). Clearly, it is desirable to weaken the CCAR assumption so that

event-dependent observation periods may be accommodated.

One approach to handling event-dependent censoring is to impute the miss-

ing post-event exposures. This may be done when there is good information on

individual-specific exposure histories. This was the approach taken by Farrington

and Whitaker (2006) in an application to MI, in which missing infections were im-

puted for individuals whose follow-up was curtailed shortly after an MI (the case

series method was found to be robust to failure of the CCAR assumption in this

instance). In most circumstances, however, it is not possible to impute exposure

histories reliably. Recently, a new self-controlled case series method has been devel-

oped which avoids any imputation, and may be used provided that the risk period

associated with the exposure is not indefinite (Farrington, Whitaker and Hocine

2009). This method works even when the event of interest is death. However, if the

event merely increases the risk of death, this method is likely to be inefficient, as

all post-event exposures are ignored. In this paper we propose a third method, in

which conditioning on the actual observation period is made explicit. This method

is closely related to the conditional Poisson modelling methods of Rathouz (2004)

and Roy, Alderson, Hogan and Tachima (2006). However, unlike these methods, it

cannot be assumed that data on the whole cohort are available.

In section 2 we derive the likelihood for the new model, which explicitly involves
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the time interval between the event and end of the actual observation period. In

section 3 we discuss inference about the parameters of interest. Section 4 describes

the implementation of semi-parametric and parametric models using standard soft-

ware. In section 5 we describe an application to stroke, in which event-dependent

censoring is likely to be a problem. We present a simulation study and a detailed

application. Section 6 contains some final remarks.

2 A MODIFIED CASE SERIES METHOD

Suppose that individuals, indexed by i, experience exposures xi(t) at age t and events

which arise according to a non-homogeneous Poisson process of rate λi(t|xi(t)). We

suppose that observation starts at age ai and may last to the pre-determined age

bi. We assume that the event rate is low, so that recurrences may be ignored (see

Farrington and Whitaker 2006 for details of the approximation involved if in fact

recurrences cannot occur).

Observation is censored by a process of hazard µi(t|h(t)), where h(t) denotes

the event history to time t. It is assumed that µi(t|h(t)) does not depend on the

exposure process xi(t). If there are no events before t, then µi(t|h(t)) ≡ µi(t). If

there is an event at s < t then µi(t|h(t)) ≡ µi(t|s). The history h(t) introduces

possible dependence of the censoring process on the event history.

Suppose that individual i experiences ni = 0 or 1 event, at time ti (if the event

occurs) in the actual observation period (ai, bi ∧ ci]. The likelihood for individual i,
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conditional on observation starting at ai, is

Li(ti, ci) = {λi(ti|xi(ti))}I(ni=1) exp−
bi∧ci∫
ai

λi(s|xi(s))ds

×{µi(ci|hi(ci))}I(ci<bi) exp−
bi∧ci∫
ai

µi(s|hi(s))ds

where I(P ) = 1 if P is true and 0 if P is false. We require that the exposure

process xi(t) is exogenous: see Farrington et al (2009) for a discussion of this key

assumption.

Now condition on the value of ni and on the actual observation period. The

conditional likelihood is

Lci(ti, ci) =
Li(ti, ci)∫ bi∧ci

ai
Li(t, ci)dt

.

If ni = 0 then

Li(ti, ci) = exp−
bi∧ci∫
ai

λi(s|xi(s))ds× {µi(ci)}I(ci<bi) exp−
bi∧ci∫
ai

µi(s)ds,

which does not depend on ti. Hence the conditional likelihood Lci(ti, ci) is the con-

stant (bi∧ ci−ai)−1. Thus, as with the standard case series method, non-cases need

not be sampled. If ni = 1 then

Li(ti, ci) = λi(ti|xi(ti)) exp−
bi∧ci∫
ai

λi(s|xi(s))ds× {µi(ci|ti)}I(ci<bi)

× exp−


ti∫

ai

µi(s)ds+

bi∧ci∫
ti

µi(s|ti)ds


and the conditional likelihood is

Lci(ti, ci) =
λi(ti|xi(ti))× {µi(ci|ti)}I(ci<bi) exp−

{∫ ti
ai
µi(s)ds+

∫ bi∧ci
ti

µi(s|ti)ds
}

∫ bi∧ci
ai

λi(t|xi(t))× {µi(ci|t)}I(ci<bi) exp−
{∫ t

ai
µi(s)ds+

∫ bi∧ci
t

µi(s|t)ds
}

dt
.

(1)
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The integrals
∫ t
ai
µi(s)ds in (1) involve the censoring hazard µi(s) before events

arise. They cannot be evaluated from cases alone: information on the entire cohort,

including non-cases, is required. To get round this problem, and thus remain within

the case series framework, we set

λ∗i (t|xi(t)) = λi(t|xi(t))× exp−
t∫

0

µi(s)ds. (2)

Since the terms exp−
∫ ai

0
µi(s)ds cancel out, we can rewrite (1) as

Lci(ti, ci) =
λ∗i (ti|xi(ti))× {µi(ci|ti)}I(ci<bi) exp−

∫ bi∧ci
ti

µi(s|ti)ds∫ bi∧ci
ai

λ∗i (t|xi(t))× {µi(ci|t)}I(ci<bi)
{

exp−
∫ bi∧ci
t

µi(s|t)ds
}

dt

or alternatively as

Lci(ti, ci) =
λ∗i (ti|xi(ti))× wi(ci; ti)∫ bi∧ci

ai
λ∗i (t|xi(t))× wi(ci; t)dt

(3)

where

wi(c; t) = {µi(c|t)}I(c<bi)
exp−

bi∧c∫
t

µi(s|t)ds

 (4)

is the density of the censoring time c conditional on an event at t, defined on the

truncated support (t, bi], with wi(b; t) = exp−
∫ b
t
µi(s|t)ds, the survivor function at

b conditional on an event at t. The rate λ∗i (ti|xi(ti)) is now no longer the individual

event rate conditional on survival to ti, but incorporates the thinning effect of cen-

soring: it is truly an incidence, rather than a hazard. Expression (3) has the form

of a weighted case series likelihood. Note that if all censoring is caused by events,

then µi(s) = 0 and hence λ∗i ≡ λi.
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3 MODELLING EVENT-DEPENDENT OBSER-

VATION PERIODS

In this section we discuss how the modified case series model described above may

be used to provide unbiased estimates of the exposure effect.

3.1 Exposure and age effects

In the standard case series model, the event rate λi(t|xi(t)) is assumed to take the

following multiplicative form:

λi(t|xi(t)) = exp(γi + βTxi(t) + α(t)).

The parameter γi represents an individual effect, and factors out of the conditional

likelihood (1). The parameter β represents the exposure effect; this is the focus of

inference. The parameter α(t) represents the (relative) effect of age, and is assumed

common to all individuals. Suppose first that the censoring hazard µi(t) is also

common to all individuals, with µi(t) = µ(t). Then the rate (2) may be written

λ∗i (t|xi(t)) = exp(γi + βTxi(t) + α∗(t)), α∗(t) = α(t)−
t∫

0

µ(s)ds.

Thus the interpretation of the exposure effect β is the same as before, and only the

(relative) age effect is affected. In practice, of course, it is likely that the censoring

hazard may vary between individuals. This may be allowed for by stratifying the

age effects according to relevant subgroups defined by fixed covariates yi, so that

λ∗i (t|xi(t), yi) = exp(γi + βTxi(t) + α∗(t; yi)).

Generally, it is sensible to stratify in this way by any fixed covariates that have

been used to model the density of censoring times ci. As with the standard case
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series model, we can also study effect modification of the exposure effect by fixed

covariates yi by inclusion of interactions xi(t)× yi.

3.2 ESTIMATION

The major novelty in the modified case series model is that it involves the weights

wi(c, t) specified in equation (4). They are obtained from the densities of the cen-

soring times for each individual i. We make the key (but reasonable) assumption

that these densities do not involve the parameters in the rate function λ∗i (t|xi(t)).

In consequence, in a first step the weights wi(c; t) may be estimated from data on

ages at event and censoring, and these estimates are then plugged in to (3). This

estimation procedure yields consistent estimates (Robins, Rotnizky and Zhao 1995,

Rathouz 2004, Roy et al 2006).

Note that if the event is death, then the weights wi(c; t) = δ(c − t), the Dirac

delta function. It follows that the likelihood (3) is degenerate and equal to 1. In

this situation, conditioning on censoring times is the same as conditioning on event

times, and estimation becomes impossible. In such circumstances the methods of

Farrington et al (2009) must be used.

3.3 STANDARD ERRORS

Let ζ = (β, α) and let η denote the parameters in the censoring model (4); the

parameters in ζ and η are assumed to be distinct. Let Ui = ∂ logLci/∂ζ and Si =

∂ logwi/∂η, evaluated at the mles, where Lci and wi are defined in (3) and (4),

respectively. It may be verified directly that Ei(∂ logLci/∂η) = −Ei(UiSTi ), where Ei

denotes expectation with respect to the event time density in the ith case, conditional

on the actual observation period. The calculation of standard errors proceeds as

described in (Robins et al 1995, Rathouz 2004, Roy et al (2006), with expected
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information replaced by observed information to allow for different follow-up times

between individuals. The variance of ζ̂ is consistently estimated by

V̂ (ζ̂) = Γ−1(ΣiŨiŨ
T
i )Γ−1, (5)

where Γ = Σi∂
2 logLci/∂ζ∂ζ

T is the observed information for ζ, and

Ũi = Ui − (ΣjUjS
T
j )(ΣjSjS

T
j )Si. (6)

Since U = ΣiUi and S = ΣiSi are likelihood scores, the asymptotic variance may be

written

V (ζ̂) = V0 − V0DWDV0

where V0 is the variance of ζ̂ obtained by maximising (3) with the wi evaluated at the

mle η̂, regarded as known. W is the asymptotic variance of η̂, and D is the asymp-

totic covariance of U and S. As noted by Rathouz (2004), estimating η can reduce

the variance of ζ̂, even when η is known. Thus the standard errors obtained from

the case series model with estimated weights wi(ci, ti) are conservative. As shown

in the next section, this model may be fitted using standard log-linear modelling

software. This greatly simplifies the fitting procedure. Accordingly, it is of interest

to evaluate the resulting loss of efficiency. In practice, interest usually focuses on β

rather than ζ. Let r = dim(β) and q = dim(η), and write

V0 =

 V11 V12

V21 V22

 , D =

 A

B


where V11 is r × r, and A is r × q. Then

V (β̂) = V11 −
{
V11AWAV T

11 + V12BWATV T
11 + V11AWBTV T

12 + V12BWBTV T
12

}
.

Thus the loss of efficiency in estimation of β̂ is small when nV12 = op(1) and n−1A =

op(1). This arises when there is little correlation between exposure status at event

8



and age at event, and between exposure status at event and age at end of observation.

This arises when exposure is not confounded with age. Thus, in the absence of such

confounding, there is likely to be little loss in efficiency by using V11 to estimate the

variance of β̂. Simulation studies reported below suggest that the loss of efficiency

is small more generally.

4 IMPLEMENTATION

The fitting of case series models is described in Whitaker, Farrington, Spiessens

and Musonda (2006). If the age effect α∗(t) is to be modelled semiparametrically

(Farrington & Whitaker 2006), with jumps only at the event times, then the integral

in the denominator of (3) becomes the sum

mi∑
j=1

λ∗i (sj|xi(sj))× wi(ci; sj)

where s1, ..., smi
are the distinct event times in (ai, bi ∧ ci]. The model can then be

fitted using standard log-linear modelling software, with the quantities log(wi(ci; sj))

as offsets in the loglinear model.

However, for large datasets, the semiparametric model may be too computa-

tionally demanding to fit. In this situation the age effect α∗(t) may be modelled

parametrically as constant on intervals. Thus, λ∗i (t|xi(t)) takes constant values, say

λ∗ij, on intervals (aij, aij+1], j = 0, ..., ki− 1 with ai0 = ai and aiki
= bi ∧ ci. Suppose

that the event age ti occurs in interval si, that is, (aisi
, aisi+1]. Since the weights

wi(c, t) do not depend on the parameters in λ∗ij, the likelihood contribution (3) of

case i may be replaced by

L′ci =
λ∗isi

Wisi
(ci)∑ki−1

j=0 λ∗ijWij(ci)
(7)
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where

Wij(c) =

aij+1∫
aij

wi(c; t)dt. (8)

Note that expression (7) is similar to that of the standard parametric case series

model, with the interval lengths eij replaced by Wij(ci). The standard model is

obtained if we set wi(c; t) = 1. The integral in (8) may need to be evaluated

numerically. The log-likelihood Σi logL′ci can be maximised using a standard log-

linear model, in exactly the same way as the standard case series model, the only

difference being that the offsets are the terms logWij(ci ∧ bi).

5 APPLICATION AND SIMULATIONS

5.1 Antipsychotics and stroke

We reanalyse data from a standard case series analysis of antipsychotics and stroke

(Douglas and Smeeth, 2008). The aim of the study was to investigate whether taking

an antipsychotic drug alters the risk of stroke. Briefly, data on 6790 patients with

at least one prescription for an antipsychotic drug and a recorded incident stroke

between January 1988 and the end of 2002 were obtained from the UK General

Practice Research Database.

The authors carried out a self-controlled case series analysis of these data. The

observation periods started at the earliest of 12 months after the start of the GPRD

record within this time interval and first antipsychotic prescription, and ended at the

earliest of end of the GPRD record and end of 2002. Patients were considered to be

at risk while they were taking antipsychotics; each risk period, the length of which

varied between patients and prescriptions, was followed by up to five contiguous

35-day washout periods. Age effects were controlled in five-year bands. The authors
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found a raised relative incidence in the risk period, RI = 1.73, 95% CI (1.60, 1.87),

declining gradually towards unity over the subsequent washout periods. The rel-

ative risk was higher, RI = 2.32 95% CI (1.73, 3.10), for patients taking atypical

antipsychotics, and in patients with dementia, RI = 3.50, 95% CI (2.97, 4.12).

Figure 1 shows a plot of the intervals from stroke to end of observation. There

is a large peak for intervals of one year or less, followed by a long tail; 1571 of the

GPRD records were current, that is, the GPRD record had not ended by the end of

observation.

Accurate information on reasons for termination of the GPRD record or precise

date of death was not always available. The large peak in Figure 1 suggests that

some strokes may have cut short the subsequent observation period, as might be

expected since stroke substantially increases short-term mortality. The observation

periods are thus likely to be event-dependent, violating the CCAR assumption.

5.2 Simulations

We undertook simulations based on these data to evaluate the likely impact of event-

dependent observation periods on the estimated association between antipsychotics

and stroke, and to evaluate the adjustment method described above. The simulation

scheme, detailed results, and full discussion are in the Supplemental Material for this

paper.

Briefly, the simulations were based on the stroke data, with stroke times gener-

ated conditionally on the actual exposures and observation periods, assuming ex-

ponentially distributed times from stroke to termination of the GPRD record with

mean ranging from 50 to 200 days.

The simulations show that the standard case series method can produce sub-

stantially biased results when observation periods are subject to event-dependent
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censoring. For example, when the true value of the relative incidence is exp(0) = 1

then the bias is positive and the estimated relative incidence is typically about 1.3.

The bias is likely to be less for relative risks slightly less than 5. The simulations

show good performance for the proposed adjusted method, both when τ is known

and when it is estimated. The loss in efficiency from using the loglinear modelling

framework (in which, in effect, τ is fixed at its estimated value) is negligible.

5.3 Modelling survival

In view of the potential for bias if the standard case series model is used, we apply

our method to these data. The first step is to model the density f(c|t, x) of age

C = c at the end of the GPRD record, conditionally on the occurrence of stroke at

age T = t and individual characteristics x. It is natural to think of the density of

C ≥ t as a mixture of two components. The first component may be expressed as

the density of the intervals C − t and describes the short-term impact on duration

of the GPRD record of a stroke at age t. The second component reflects both the

underlying process by which GPRD records terminate, and the possible longer term

impact on this process of a stroke at t. Thus, a natural model for the density f is

of the form:

f(c|t, x) = π(t, x)g(c− t) + (1− π(t, x))h(c|t, x) (9)

where g is a density on (0,∞) and h is a density on (t,∞). Model (9) can further

be specialised according to whether the second component models C or C − t. In

the first instance, we have

h(c|t, x) ≡ h′(c|x)∫∞
t
h′(u|x)du

and in the second,

h(c|t, x) ≡ h′(c− t|t, x)
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for some density h′. We refer to the first form as the age model and the second as

the interval model.

We chose g(z) = ρ−1 exp(−z/ρ) to be an exponential density with (small) mean

ρ. For h we tried both Weibull and Gamma densities, expressed in both age and

interval forms. This yields four distinct mixture models. Let i denote an individual

with age at stroke ti, gender x1i (0 = male, 1 = female), prior dementia x2i (0=

absent, 1 = present), age at start of observation ai, age at end of study bi, and age

at end of GPRD record ci. The four models were as follows.

5.3.1 Exponential - Weibull (age) mixture model (EWA).

The likelihood contribution for an individual i is

Lsi (ci|ti, ai, xi) = f(ci|ti, ai, xi)I(ci<bi) × P (C > bi|ti, ai, xi)1−I(ci<bi) (10)

where

f(c|t, a, x) =
π(t, x)

ρ(x)
e−(c−t)/ρ(x) + (1− π(t, x))

ν(a, x)

µ(a, x)

(
c

µ(a, x)

)ν(a,x)−1

× exp−

{(
c

µ(a, x)

)ν(a,x)
−
(

t

µ(a, x)

)ν(a,x)}
,

P (C > b|t, a, x) = π(t, x)e−(b−t)/ρ(x) + (1− π(t, x))

× exp−

{(
c

µ(a, x)

)ν(a,x)
−
(

t

µ(a, x)

)ν(a,x)}
.

The regression models for the parameters are:

ρ(x) = ρx,

logit{π(t, x)} = γx + δxt,

log{µ(a, x)} = ζx + ηxa, (11)

log{ν(a, x)} = θx + ξxa,

where the notation ρx, for example, indicates four different parameters according to

the values taken by x = (x1, x2).
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5.3.2 Exponential - Weibull (interval) mixture model (EWI).

The likelihood contribution for an individual i is

Lsi (ci|ti, xi) = f(ci|ti, xi)I(ci<bi) × P (C > bi|ti, xi)1−I(ci<bi) (12)

where

f(c|t, x) =
π(t, x)

ρ(x)
e−(c−t)/ρ(x) + (1− π(t, x))

ν(t, x)

µ(t, x)

(
c− t
µ(t, x)

)ν(t,x)−1

× exp−

{(
c− t
µ(t, x)

)ν(t,x)}
,

P (C > b|t, x) = π(t, x)e−(b−t)/ρ(x) + (1− π(t, x))

× exp−

{(
c− t
µ(t, x)

)ν(t,x)}
.

The regression models for the parameters are

ρ(x) = ρx

logit{π(t, x)} = γx + δxt,

log{µ(t, x)} = ζx + ηxt, (13)

log{ν(t, x)} = θx + ξxt.

5.3.3 Exponential - Gamma (age) mixture model (EGA).

The likelihood contribution for an individual i has the same form as (10), with

f(c|t, a, x) =
π(t, x)

ρ(x)
e−(c−t)/ρ(x) + (1− π(t, x))

1

Γ(ν(a, x))

1

µ(a, x)

×
(

c

µ(a, x)

)ν(a,x)−1

exp

(
−ν(a, x) c

µ(a, x)

)
S(t|a, x)−1,

P (C > b|t, a, x) = π(t, x)e−(b−t)/ρ(x) + (1− π(t, x)) S(b|a, x) S(t|a, x)−1

where

S(t|a, x) =

∞∫
t

1

Γ(ν(a, x))

1

µ(a, x)

(
z

µ(a, x)

)ν(a,x)−1

exp

(
−ν(a, x) z

µ(a, x)

)
dz.

The regression models for the parameters are as in (11).
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5.3.4 Exponential - Gamma (interval) mixture model (EGI)

The likelihood contribution for an individual i has the same form as (12), with

f(c|t, x) =
π(t, x)

ρ(x)
e−(c−t)/ρ(x) + (1− π(t, x))

1

Γ(ν(t, x))

1

µ(t, x)

×
(
c− t
µ(t, x)

)ν(t,x)−1

exp

(
−ν(t, x) (c− t)

µ(t, x)

)
,

P (C > b|t, a, x) = π(t, x)e−(b−t)/ρ(x) + (1− π(t, x)) S(b− t|t, x)

where

S(b− t|t, x) =

∞∫
b−t

1

Γ(ν(t, x))

1

µ(t, x)

(
z

µ(t, x)

)ν(t,x)−1

exp

(
−ν(t, x) z

µ(t, x)

)
dz.

The regression models are as in (13).

5.4 ESTIMATING THE WEIGHTS

Gender had little effect on the exponential mean ρ, so only the effect of prior de-

mentia was retained on this parameter. The maximised loglikelihoods and AIC for

the four models, each with 26 parameters, are shown in Table 1. The lowest AIC is

achieved by the exponential - Weibull (age) model EWA.

If the model is correct, then for each t the cumulative hazards H(x|t), x > t

constitute a sample from a unit exponential. So the empirical survival function

for the fitted cumulative hazards should approximate that of a unit exponential.

Figure 2 shows the log of the empirical survival function of the fitted cumulative

hazards, together with a plot of unstandardized residuals (interval from stroke to

end of observation minus expected value) against expected values, both obtained

using the EWA model. The plots suggest a satisfactory model fit, the boundaries in

the residual plot resulting from the non-negativity and boundedness of the observed

intervals.
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Figure 3 shows some of the features of the model: in particular, the mixing

probability π(t, x) increases with age at stroke t. This suggests that the risk of dying

of a stroke (the most obvious reason for censoring of the GPRD record) increases

with age.

The weights Wij(ci) were estimated using all four models described above, by

numerical integration with respect to age at stroke t as per equation (8).

5.5 FITTING THE MODIFIED CASE SERIES MODEL

We fitted model (7) to the stroke data using the same risk periods and age groups

as used by Douglas and Smeeth (2008), with the values log(Wij(ci)) described in

the previous subsection using model EWA, and also using the standard case series

model. The latter corresponds to setting the Wij equal to the interval lengths.

Figure 4 contrasts the age effects obtained with the two versions of the model.

This illustrates the different interpretations of the age effects in the two models. In

the standard model, the age effect corresponds to the relative age-specific incidence,

conditional on remaining under observation within the GPRD. In the new model,

the age effect is not conditional on remaining under observation.

Further investigations suggested that, in view of the very marked increase in

stroke incidence with age, it was advisable to use narrower age groups, at least

where data were abundant. We therefore used 45 age bands of differing lengths,

including 1-year age bands in the range 58 - 96 years where most strokes occurred.

The results for the four models EWA, EWI, EGA and EGI, along with those for

the standard case series model, are shown in Table 2. In all models, underlying

age effects have been stratified according to gender, prior dementia, and type of

antipsychotics used (such stratification improves model fit but has little impact on

the estimates of relative incidence).
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Table 2 shows that, in this example, ignoring event-dependent observation pe-

riods results in an upward bias in the relative incidences. The choice of model for

the weights has little impact on the estimates. The confidence intervals reported in

Table 2 are calculated from the loglinear model.

As in the published analysis, we found a big interaction with prior dementia,

the relative incidence being much higher in persons with prior dementia, but no

interaction with antipsychotic drug type. Table 3 shows the results for the exposed

risk period for the new and standard models. Once again, the results are not unduly

sensitive to the choice of model for the age at end of GPRD record. All four adjusted

models give similar results. These differ from those obtained with the standard

case series model in one key respect: whereas the standard model indicated an

increased relative incidence associated with the use of antipsychoptics of any type in

patients without dementia, the analyses adjusted for the event-dependent censoring

of the observation periods suggest that there is no increased risk in patients without

dementia.

In models EWA and EGA, the dependence between age at end of observation

and age at stroke occurs explicitly only via the first component of the mixture

model. Setting the parameters π(t, x) to zero eliminates this dependence. Thus, for

these two models, the validity of the second component can be checked by dropping

the first, since models with weights calculated from the second component only

should give the same results as the uncorrected case series model. We checked

the validity of the age models EWA and EGA by recalculating the weights Wij

with the parameters π(t, x) set to zero, all other parameters in the densities of

age at censoring retaining their previously estimated values. The results are shown

in Table 4, along with the results for the standard case series model (reproduced

from Table 3). The maximised loglikelihoods for the three models are similar, as
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are the parameter estimates. This suggests that both the Weibull and the gamma

distributions provide adequate descriptions of the distribution of age at end of GPRD

record in individuals who do not die of stroke. The contrast between these results for

models EWA and EGA and those shown in Table 3 provides a direct demonstration

of the impact of stroke-induced censoring of observation periods on the parameter

estimates.

Further analyses (not presented) were undertaken in which the exponential stroke-

associated component was modelled as Weibull or gamma. For each model the

estimated shape parameter was close to 1 (corresponding to the exponential den-

sity) and the parameter estimates were virtually identical to those obtained with an

exponential component.

5.6 Interpretation

These analyses suggest that there is little evidence of an increased risk of stroke

after taking antipsychotic drugs for persons without dementia, irrespective of the

type of antipsychotic. For persons with dementia, however, the relative incidence

is increased during the prescription period by about three-fold for both typical and

atypical antipsychotics, during the prescription period. Thereafter the relative inci-

dence falls to 1 gradually over the five washout periods for patients with dementia

(results not shown). For patients without dementia there is a suggestion of a reduc-

tion in stroke risk during the five washout periods (results not shown). Whether

this decrease is causally related to taking antipsychotics or coming off them, is

artefactual, or is a chance finding, remains unclear. It could, for example, reflect

an increased propensity to use antipsychotics following a stroke, in which case the

relative incidences associated with exposure and washout periods will have been

underestimated.

18



The model used for the censoring process was a mixture model depending on

age at start of observation, age, gender, and dementia status. The first component

described the short-term impact of stroke on censoring; the second the combined

effect of the longer term impact of stroke and the underlying censoring process.

Results were insensitive to this second component. In two of the models, the validity

of the second component was tested by dropping the first, and demonstrating that

the results of the standard analysis are thereby retrieved. This suggests that any bias

in the standard analysis is due only to the short-term censoring induced by stroke.

The validity of the first component was tested by embedding it within broader model

classes, with no difference in results.

The method makes the assumption that the censoring process does not depend

on antipsychotic use. This does not appear unreasonable. However, no case series

model - nor indeed any other model - is immune from unobserved time-varying con-

founders, through which exposure is correlated with a time-varying but unmeasured

factor associated with stroke. If such a factor is responsible for the association be-

tween exposure to antipsychotics and stroke, it would act differentially in patients

with and without dementia. It is also conceivable that a time-varying unmeasured

counfounder may be associated with both exposure to antipsychotics and censoring.

To impact on results, such a confounder would need to act differentially in patients

with and without dementia. While the mean of the exponential component did vary

slightly between patients with (0.091 years) and without (0.11 years) dementia (like-

lihood ratio test, p = 0.077 for model EWA), the associations with stroke were not

sensitive to this difference. We conclude that it is unlikely that such effects could

explain the marked contrast between associations with antipsychotic use observed

in patients with and without dementia.
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6 DISCUSSION

The standard self-controlled case series model requires that observation periods

be censored completely at random (CCAR). In this paper, we have extended the

method to allow for event-dependent censoring, or censoring at random (CAR) while

remaining within a case series framework in which only individuals who have ex-

perienced the event of interest are sampled. The method works by conditioning

explicitly on the age at censoring in cases, and involves weighting cases by the den-

sity of the time from event to censoring (or the corresponding survival probability in

cases which are followed to the nominal end of observation). The approach is similar

in spirit to that first proposed by Robins et al (1995) and applied in conditional log-

linear models by Roy et al (2006), but with an additional trick to enable us to remain

within the case series framework. Under this model, the exposure effect parameters

β retain the same interpretation as under the standard case series model. The age

effect, however, takes on a different interpretation: it now represents the combined

effect of age-specific relative incidence and censoring. In most applications, the focus

of the investigation is the exposure effect, and the age-specific relative incidence is

a nuisance parameter. If censoring of observation periods is CAR but not CCAR,

the age-specific relative incidence cannot in general be estimated from case series

data alone, but requires information from non-cases. One important exception is

when censoring for reasons unrelated to the event is rare; in this case the age-specific

relative incidence retains its original interpretation.

The method is applicable provided that conditioning on censoring time does not

render the event time determinate, as would occur if the event were death. In this

situation, the method developed by Farrington et al (2009) can be used instead,

provided the risk period is not indefinite. More generally, we might expect the

efficiency of the method to decline as the variance of age at event, conditional on
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censoring time, is reduced.

The method may be implemented in standard loglinear modelling software, with

estimated offsets log{Wij(ci)} estimated in a separate modelling process. The stan-

dard errors obtained using this simple method are conservative, though our simula-

tions suggest that such losses are likely to be small, at least as far as the exposure

effect parameters β are concerned. As noted by Rathouz (2004), further loss of effi-

ciency may also be expected owing to the fact that the censoring process is ancillary

for β: the density (4) does not involve β, yet the conditional likelihood (3) depends

on the censoring times ci. In a different but related context, Rathouz (2004) found

that a small increase in efficiency could be obtained by removing the β-ancillary

information in the censoring process. Overall, however, the gains in efficiency over

the simple log-linear model obtained by these more elaborate methods are likely to

be small, especially for estimating the exposure effect.

This extension expands the field of possible applications of the self-controlled case

series method, particularly in pharmacoepidemiology. One of the most important

biases in observational drug safety studies - confounding by indication - is rendered

largely irrelevant by the self-controlled aspect of the method. However, many serious

potential adverse drug effects requiring evaluation increase the risk of short/medium

term death, and therefore violate the standard case series assumptions. The present

extension allows the case series method to be used reliably in such circumstances,

provided other assumptions are not also violated. As in the standard case series

model, confounders that act multiplicatively on the event rate λi(t|xi(t)) factor out

and hence may be ignored (at least as main effects). However, this is not true for

confounders acting on the censoring process µi(t|h(t)), as they can influence the

estimation of the weights wi(ci; ti). Because of this limitation, it remains of interest

to establish conditions under which the standard case series model remains robust

21



to event-dependent censoring, and to study the robustness of the present extension

to mis-specification of the censoring process.

We have illustrated the method with an application to an important dataset

concerning the effect of antipsychotic drugs on the risk of stroke. We have shown

that ignoring event-dependent censoring of observation periods can produce sub-

stantial bias, though the main finding of the original paper still stands, namely that

taking antipsychotics is associated with a substantially increased risk of stroke in

patients with dementia. In this application, the time from event to study end or

censoring was modelled by a two-component mixture in which the first component

represented the effect of stroke and the second the underlying, stroke-independent,

censoring process. This formulation provided a novel opportunity for internal model

validation, in which the second component is checked by dropping the first. This

mixture modelling approach and validation technique are likely to be applicable

more widely.

7 SUPPLEMENTAL MATERIAL

Simulations: Details of the simulations briefly summarized in subsection 5.2, in-

cluding simulation scheme, full results, and discussion (pdf).
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Tables

Table 1 Model fit

Model EWA EWI EGA EGI

Loglik -7849.55 -7855.09 -7855.95 -7853.07

AIC 15751.10 15762.18 15763.90 15758.14

Table 2 Relative incidence of stroke by risk period, with 95% confidence interval

Model

Risk period EWA EWI EGA EGI Standard

Exposed 1.29 1.28 1.28 1.28 1.54

(1.19,1.40) (1.18,1.39) (1.19,1.39) (1.19,1.39) (1.42,1.67)

Washout 1 0.93 0.95 0.94 0.95 1.53

(0.83,1.03) (0.85,1.05) (0.85,1.04) (0.85,1.05) (1.38,1.70)

Washout 2 0.89 0.92 0.91 0.91 1.48

(0.77,1.03) (0.79,1.06) (0.78,1.05) (0.79,1.05) (1.28,1.70)

Washout 3 0.94 0.96 0.95 0.96 1.44

(0.79,1.11) (0.81,1.14) (0.80,1.13) (0.81,1.14) (1.22,1.70)

Washout 4 0.75 0.76 0.76 0.76 1.11

(0.60,0.92) (0.62,0.94) (0.61,0.93) (0.62,0.94) (0.90,1.36)

Washout 5 0.70 0.71 0.71 0.71 0.96

(0.55,0.88) (0.56,0.90) (0.56,0.89) (0.56,0.90) (0.76,1.20)

Loglik -15791.22 -15770.31 -15763.35 -15768.67 -16895.21

Note: Each model has 225 parameters.
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Table 3 Relative incidence of stroke in risk period by dementia status and an-

tipsychotic type, with 95% confidence interval

Anti- Prior Model

psychotic dementia EWA EWI EGA EGI Standard

Typical No 1.05 1.06 1.05 1.06 1.31

(0.95,1.16) (0.96,1.16) (0.96,1.16) (0.96,1.17) (1.18,1.44)

Atypical No 0.94 0.95 0.95 0.95 1.45

(0.67,1.33) (0.67,1.34) (0.67,1.34) (0.67,1.34) (1.02,2.05)

Typical Yes 3.10 2.84 2.87 2.87 2.91

(2.57,3.73) (2.36,3.41) (2.39,3.44) (2.39,3.45) (2.42,3.50)

Atypical Yes 2.80 2.74 2.76 2.75 3.40

(1.44,5.41) (1.44,5.25) (1.45,5.29) (1.43,5.26) (1.79,6.46)

Loglik -15711.79 -15697.64 -15689.16 -15695.41 -16840.45

Note: Each model has 255 parameters.

Table 4 Relative incidences (and 95% CI) without event-dependent censoring

Anti- Prior Model

psychotic dementia EWA, π ≡ 0 EGA, π ≡ 0 Standard

Typical No 1.29 1.30 1.31

(1.17,1.43) (1.17,1.43) (1.18,1.44)

Atypical No 1.42 1.42 1.45

(1.00,2.01) (1.00,2.01) (1.02,2.05)

Typical Yes 2.83 2.83 2.91

(2.35,3.40) (2.35,3.40) (2.42,3.50)

Atypical Yes 3.18 3.19 3.40

(1.67,6.06) (1.68,6.07) (1.79,6.46)

Loglik -16840.10 -16841.74 -16840.45
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Figure captions

Figure 1: Intervals from stroke to end of observation (years), and censoring

values (rug).

Figure 2: Goodness-of-fit of model EWA. Left: logarithm of the empirical sur-

vival function of the fitted cumulative hazards (dots) and a unit exponential (line).

Right: residuals versus expected values (open circles are censored observations) of

intervals from event to end of observation.

Figure 3: Features of the fitted EWA model: functional dependence of param-

eters π(t, x), µ(a, x), ν(a, x) on age at stroke t, age at start of the GPRD record a,

gender x1 and presence of dementia x2. Full lines: males without dementia; tight

dashes: females without dementia; dots and dashes: males with dementia; loose

dashes: females with dementia.

Figure 4: Logarithms of the age effects (5-year age groups) estimated using two

case series models, relative to age 60 - 65 years. Full dots and lines: standard model;

circles and dashes: model EWA.
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Figure 2
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Figure 3
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Figure 4
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Supplemental Material

This Supplemental Material describes the simulations summarized in section 5.2

of the paper. It includes details of the simulation scheme used, full results, and

discussion.

A The simulation scheme

The simulations were undertaken to evaluate the likely impact of event-dependent

observation periods on the estimated association between antipsychotics and stroke

in the dataset under consideration, and to evaluate the adjustment method described

in the paper.

Accordingly, we used the observed exposure histories xi(t) and observation peri-

ods (ai, c
∗
i ] (where c∗i = bi ∧ ci]) for each case i. For the purpose of the simulations,

we assumed that time from stroke to termination of the GPRD record was exponen-

tially distributed with mean τ−1, for various values of τ . We obtained the Wij(ci)

from equation (8) of the paper. For an interval (aij, aij+1],

log(Wij(ci)) = log(τ)I(ci ≥ bi) + log{e−(c∗i−aij+1)/τ − e−(c∗i−aij)/τ}.

Note that since the term log(τ)I(ci ≥ bi) is constant for individual i, it cancels

out in equation (7) of the paper, and hence it makes no difference in this case

whether ci < bi or ci ≥ bi.

We chose a range of values for the relative incidence eβ associated with exposure,

and fixed the relative incidences associated with each 5-year age group to values

similar to those estimated from the data using the standard case series model. These

values indicate an exponentially increasing risk with age, and are plotted in Figure 4
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of the paper. We used the same risk periods as in the data, but no washout periods:

the relative incidence in these was assumed to be 1.

We simulated event times ti for each case, conditionally on the observed expo-

sures and observation periods, and thus on the c∗i . This conditioning is required

because estimation with the case series method is conditional on these quantities.

The simulation of the ti was done in two steps. First, for each case, the age-exposure

interval containing ti was selected by multinomial sampling based on equation (7) of

the paper. Second, the event time within that interval, (a, b] say, was selected using

the density τ−1 exp(y/τ)/{exp(b/τ)− exp(a/τ)}. The resulting intervals c∗i − ti are

then approximately exponentially distributed with mean τ−1. The approximation

is valid when τ is small in relation to the observation period; the validity of the

approximation was checked. Note that, in this sampling scheme, all observation

periods are censored by the end of the GPRD record.

For each run, the data were analysed by three methods: (a) the standard case

series method; (b) the new method with known τ ; and (c) the new method with

estimated τ̂ = Σ6790
i=1 (c∗i − ti)/6790.

One thousand runs were done for each combination of τ = 50, 100, 150, 200 days

and exp(β) = 1, 2, 5, 10.

B Results

Tables A1 to A4 give the results for τ = 50, 100, 150, 200 days, respectively. The

summary statistics presented include the means of the 1000 values of β̂ estimated

using the three methods described in section A; the mean of the estimated standard

errors of β̂ obtained using the three methods; and the standard deviation of the

1000 values of β̂.
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C Discussion of the simulations

The simulations show that the standard case series method can produce substantially

biased results when observation periods are subject to event-dependent censoring.

For example, when the true value of the relative incidence is 1 then the bias is

positive and the estimated relative incidence is typically about 1.3 for the values of

τ considered. Both the size of the bias and its direction vary with τ and β. For

a given value of τ , the bias becomes negative for sufficiently large values of β. For

example, with τ = 50 days, the estimated relative incidence is typically about 7.4

for a true value of 10.

More generally, the magnitude and direction of bias will depend on the dataset, as

both are determined by the relative lengths of the risk and control periods curtailed

by censoring. The value τ = 50 days best mimics the stroke data. Our simulations

with this τ suggest that relative incidences close to 1 will be biased upwards in a

standard analysis, whereas relative incidences slightly lower than 5 will be roughly

unbiased.

The adjusted case series method eliminates the bias effectively for all values of

β and τ . Estimating τ does not introduce any further bias.

There is good agreement between the average standard errors and the standard

deviations of the simulated β̂, especially for the correctly specified models. Un-

surprisingly, the standard errors are larger for the adjusted models than for the

standard model, though the mean squared errors (not shown) are lower for the

adjusted models in these data.

Theoretical considerations described in subsection 3.3 of the paper suggest that

efficiency may be improved by estimating τ even when it is known. One might

therefore expect to find the empirical standard deviation of β̂ in the adjusted analysis

with τ estimated to be less than mean standard error in the adjusted analysis with
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τ fixed at its known value. There is some evidence of this, though the differences are

small and not practically important. The mean standard errors estimated using the

loglinear model with τ estimated and τ known differ only in the fourth decimal place.

We conclude that the loglinear modelling framework is suitable for this application.
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Table A1: Simulation results for τ = 50 days

β : log(RI)

Analysis 0 : log(1) 0.6931 : log(2) 1.6094 : log(5) 2.3026 : log(10)

Unadjusted

mean β̂ 0.2579 0.8459 1.5433 1.9959

mean SE 0.0407 0.0367 0.0360 0.0361

std dev 0.0358 0.0331 0.0298 0.0276

Adjusted: true τ

mean β̂ 0.0008 0.6935 1.6093 2.3061

mean SE 0.0407 0.0406 0.0431 0.0466

std dev 0.0410 0.0405 0.0426 0.0459

Adjusted: estimated τ

mean β̂ 0.0036 0.6925 1.5838 2.2346

mean SE 0.0408 0.0406 0.0427 0.0457

std dev 0.0410 0.0402 0.0419 0.0430

RI: Relative incidence.
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Table A2: Simulation results for τ = 100 days

β : log(RI)

Analysis 0 : log(1) 0.6931 : log(2) 1.6094 : log(5) 2.3026 : log(10)

Unadjusted

mean β̂ 0.3287 0.9748 1.7635 2.2918

mean SE 0.0376 0.0362 0.0356 0.0359

std dev 0.0361 0.0348 0.0325 0.0296

Adjusted: true τ

mean β̂ 0.0012 0.6939 1.6103 2.3025

mean SE 0.0385 0.0380 0.0396 0.0423

std dev 0.0378 0.0384 0.0402 0.0412

Adjusted: estimated τ

mean β̂ 0.0013 0.6960 1.6126 2.2962

mean SE 0.0385 0.0381 0.0396 0.0422

std dev 0.0379 0.0384 0.0402 0.0408

RI: Relative incidence.
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Table A3: Simulation results for τ = 150 days

β : log(RI)

Analysis 0 : log(1) 0.6931 : log(2) 1.6094 : log(5) 2.3026 : log(10)

Unadjusted

mean β̂ 0.3158 0.9844 1.8169 2.3932

mean SE 0.0374 0.0359 0.0352 0.0356

std dev 0.0369 0.0363 0.0324 0.0317

Adjusted: true τ

mean β̂ 0.0002 0.6937 1.6102 2.3019

mean SE 0.0378 0.0370 0.0378 0.0398

std dev 0.0375 0.0385 0.0373 0.0397

Adjusted: estimated τ

mean β̂ -0.0034 0.6927 1.6153 2.3108

mean SE 0.0378 0.0371 0.0380 0.0400

std dev 0.0376 0.0387 0.0376 0.0399

RI: Relative incidence.
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Table A4: Simulation results for τ = 200 days

β : log(RI)

Analysis 0 : log(1) 0.6931 : log(2) 1.6094 : log(5) 2.3026 : log(10)

Unadjusted

mean β̂ 0.2904 0.9712 1.8303 2.4412

mean SE 0.0374 0.0358 0.0349 0.0353

std dev 0.0380 0.0345 0.0321 0.0320

Adjusted: true τ

mean β̂ -0.0004 0.6932 1.6099 2.3048

mean SE 0.0374 0.0364 0.0367 0.0383

std dev 0.0381 0.0358 0.0353 0.0375

Adjusted: estimated τ

mean β̂ -0.0083 0.6878 1.6128 2.3174

mean SE 0.0375 0.0365 0.0369 0.0386

std dev 0.0382 0.0360 0.0358 0.0382

RI: Relative incidence.
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