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ABSTRACT

Each continuous distribution on (0, 1), with cumulative distribution function F say,

has a complementary distribution which is the distribution with cumulative distri-

bution function F−1. Some basic general properties of complementary distributions

are given. A particular focus of this article is then the construction of families of

distributions, each based on a given F and indexed by a single additional parameter,

which are closed under complementarity; properties of these families of distributions

are explored, as are those of a particular special case.
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1. Introduction

This article is concerned with understanding certain theoretical structures under-

lying continuous distributions for modelling data on a known finite interval which,

without loss of generality, can be taken to be (0, 1). Consider such a distribution with

cumulative distribution function (c.d.f.) F , say. It is then the case that F−1 is also

the c.d.f. of a distribution on (0, 1).

Definition 1.1. The distribution with c.d.f. F−1 will be termed the complementary

distribution to F .

See Jones (2002) for exploration of this notion in the special case where F is the c.d.f.

of a beta distribution, and the distribution with c.d.f. F−1 was called the complemen-

tary beta distribution. Some basic general properties of complementary distributions

are given in Section 2 of the current article, partly by way of background to the

remainder of the article, and almost entirely for the first time.

A particular focus of this article is the construction of families of distributions, each

based on a given F and indexed by a single additional parameter 0 ≤ p ≤ 1, which are

closed under complementarity: the family includes F , F−1 (and, as it happens, U , the

c.d.f. of the uniform distribution, which is its own complement) and all distributions

“between F and F−1” in a certain sense, including their complementary distributions:

members of the family indexed by p are complementary to members indexed by 1−p.

Details of these families of complementary distributions and their properties are given

in Section 3. By way of example, one particular tractable family of distributions with

monotone densities is the subject of Section 4. The article closes with further remarks

in Section 5.

2. Complementary distributions

Let V be a random variable following a distribution with c.d.f. F ; write this as

V ∼ F . Then, defining W = F (F (V )), it is easy to show that W ∼ F−1. Equivalently,

if U ∼ U , then W = F (U) ∼ F−1, which typically affords straightforward random

variate generation from F−1; contrast this with V = F−1(U) ∼ F .

Write f for the probability density function (p.d.f.) associated with F . The p.d.f.

associated with F−1 is 1/f(F−1(w)), which is the quantile density function, q, of F .

A complementary pair of distributions therefore exhibits reciprocal behaviour at the

extremes of the unit interval: limw→ 0 or 1 q(w) = 1/ limv → 0 or 1 f(v). Since q′(w) =

−f ′(F−1(w))/f 3(F−1(w)), f ′ and q′ exhibit the same number of zeroes. Zeroes of f ′,

situated at vi, say, correspond to zeroes of q′ situated at wi = F (vi). In particular,

if f is decreasing (resp. increasing), then q is increasing (resp. decreasing). If f is

unimodal (resp. uniantimodal) with mode (resp. antimode) at 0 < v0 < 1, then q is

uniantimodal (resp. unimodal) with antimode (resp. mode) at w0 = F (v0). If F is a
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distribution symmetric about v = 1/2 then so is F−1. The unique distribution whose

complementary distribution is the same as the original distribution is the uniform

distribution.

Moments of complementary distributions can be written as

EF−1(W r) =

∫ 1

0

F r(v)dv.

In particular, as one might expect,

EF−1(W ) = 1 − EF (V ). (1.1)

It also turns out that the variance of the complementary distribution satisfies

VF−1(W ) = 2EF (V ) − {EF (V )}2 − 2EF{V F (V )} (1.2)

while

SF−1(W ) = −3EF{V F 2(V )} + 6{EF (V F (V )}{1 − EF (V )}
+{EF (V )}3 + 3EF (V ){2EF (V ) − EF (V 2)} − 3EF (V )

where, generically, SH(T ) = EH{T −EH(T )}3 denotes the numerator of the classical

(1.3)

skewness measure when T ∼ H . Direct proofs of these assertions are omitted as they

arise as special cases of more general formulas provided in Section 3.

As noted in Jones (2002), integrals of the form
∫

F r(x)(1 − F )s(x)dx are central

components in the calculation of expectations of order statistics of a distribution with

c.d.f. F , and associated quantities such as expectations of spacings and L-moments.

In the case of the complementary distribution with c.d.f. F−1 this integral equates

simply to EF{V r(1 − V )s}.
As for L-moments themselves (Hosking, 1990), which I generically denote Ln;H(T ):

L1;H(T ) is the mean of H ; the scale measure L2;H(T ) is one-half of Gini’s mean

difference, which for the original and complementary distribution satisfies

L2;F (V ) = 2EF{V F (V )} − EF (V ), L2;F−1(W ) = EF (V ) − EF (V 2); (1.4)

and L3;H(T ), the numerator of the L-skewness measure, satisfies

L3;F (V ) = 6EF{V F 2(V )} − 6EF{V F (V )} + EF (V ),

L3;F−1(W ) = 3EF (V 2) − 2EF (V 3) − EF (V ).

The statements concerning L-moments of both F and F−1 can be readily obtained

(1.5)

directly as well as being special cases of results in Section 3.
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Combining (1.2), (1.4) and the standard formula for VF (V ), the following re-

markable invariance property under complementarity emerges which can equivalently

be written as the equality of scale differences between F and F−1 measured in two

different ways.

Theorem 2.1

VF−1(W ) − L2;F−1(W ) = VF (V ) − L2;F (V )

or equivalently

VF−1(W ) − VF (V ) = L2;F−1(W ) − L2;F (V ).

3. Families of complementary distributions

Repurposing an approach to the combination of certain functions and their in-

verses taken by Jones & Pewsey (2012, Section 3), the following definition is made.

Definition 3.1. The c.d.f. of the new family of distributions is given by

Gp(u) =
{

(1 − p) u + (2p − 1)M−1
p (u)

}

/p, 0 < u < 1,

where the parameter p takes values in [0, 1] and

Mp(u) = pF (u) + (1 − p)u

is the c.d.f. of the usual p : 1 − p mixture of F and U .

It is immediate that

G1/2(u) = u = U(u) and G1(u) = F−1(u).

Defining G0(u) by continuity in p and noting that

[u + p{F (u) − u}]−1 = u − p{F (u) − u} + o(p)

as p → 0 shows that

G0(u) = F (u).

So, as p increases, the family moves from F through U to F−1.

As suggested in Section 1, the appeal of this formulation lies in the fact that, for

all 0 ≤ p ≤ 1, Gp and G1−p are complementary to one another (this is clearly so when

p = 0 or 1 and, indeed, when p = 1/2).

Theorem 3.1

Gp(u) = G−1
1−p(u).

4



Proof

I need to prove the result for any p ∈ (0, 1/2) ∪ (1/2, 1). Observe that

Gp(Mp(u)) = {(1 − p) Mp(u) + (2p − 1) u} /p

=
{

(1 − p)2u + p(1 − p) F (u) + (2p − 1) u
}

/p

= pu + (1 − p)F (u) = M1−p(u).

So, Gp(u) = M1−p(M
−1
p (u)) which implies that

G−1
p (u) = Mp(M

−1
1−p(u)) = G1−p(u).

Corollary 3.1

For 0 < α < 1, the quantile function associated with Gp is

G−1
p (α) = G1−p(α) =

{

p α + (1 − 2p)M−1
1−p(α)

}

/(1 − p).

If F is symmetric about v = 1/2, then so is Mp and so is every Gp derived from

F . In that case, of course, G−1
p (1/2) = 1/2.

Suppose that it is desired to generate X ∼ Gp. As an alternative to numerically

inverting M1−p in the course of implementing the probability integral transformation

using Corollary 3.1, random variate generation can also be performed via the distri-

bution of Y = M−1
p (X) which has c.d.f. Gp(Mp(y)) = M1−p(y) (the equality being

central to the proof of Theorem 3.1 above). If V ∼ F and independent U ∼ U are

available, then choose

Y =

{

U with probability p,

V with probability 1 − p

and, finally, set X = Mp(Y ) = pF (Y ) + (1 − p)Y .

Corollary 3.2 lists some distributional relationships associated with Gp. Each

is the specialisation to Gp of a general result: the first of a general property of

complementary distributions mentioned in Section 2; the second of the fact that if

V ∼ F then F−1(1−F (V )) ∼ F also; and the third of a general result of Marchand,

Jones & Strawderman (2018).

Corollary 3.2

X ∼ Gp ⇒ Gp(Gp(X)) ∼ G1−p,

X ∼ Gp ⇒ G1−p(1 − Gp(X)) ∼ Gp,

U ∼ U ⇒ Gp(U) − U ∼ U − G1−p(U).
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Since Gp(u) = M1−p(M
−1
p (u)), the density associated with Gp is

gp(u) = m1−p(M
−1
p (u))/mp(M

−1
p (u))

= {p + (1 − p) f(M−1
p (u))}/{1− p + p f(M−1

p (u))}

where f and mp are the densities associated with F and Mp, respectively.

Theorem 3.2

When 0 ≤ p < 1/2, gp shares its modality with F ′ = f ; when 1/2 < p ≤ 1, gp shares

its modality with (F−1)′ = 1/f(F−1). Moreover, if any mode and/or antimode of f

or 1/f(F−1) is situated at v0 say, then the corresponding mode and/or antimode of

gp is situated at Mp(v0). This means that said mode/antimode lies between v0 and

F (v0).

Proof

It is easy to show that g′

p(u) comprises positive terms multiplied by (1−2p)f ′(M−1
p (u)),

from which the theorem follows.

Notice that this is quite different from the situation with a p : 1 − p mixture of F−1

and F which typically adds modes/antimodes; the current construction does not.

Tail behaviour of gp also follows immediately from that of f , for any 0 ≤ p ≤ 1:

Theorem 3.3

Let either endpoint of the support, 0 or 1, be denoted ue and let c be a finite positive

constant. Then

f(ue) → 0 ⇒ gp(ue) → p/(1 − p),

f(ue) → c ⇒ gp(ue) → {p + (1 − p)c}/(1 − p + pc),

f(ue) → ∞ ⇒ gp(ue) → (1 − p)/p.

3.1 Moments and L-moments

I now turn attention to moments (and then to L-moments). Making use of the

facts that, for any random variable T on (0, 1) with c.d.f. H , say,

EH(T ) = 1 −
∫ 1

0

H(t) dt =

∫ 1

0

H−1(t) dt,

the following is true:
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Theorem 3.4

EGp
(X) = p − (2p − 1)EF (V )

Proof

EGp
(X) = 1 −

∫ 1

0

Gp(x)dx

= 1 −
{

(1 − p)/2 + (2p − 1)EMp
(S)

}

/p

= 1 − [(1 − p)/2 + (2p − 1) {(1 − p)/2 + pEF (V )}] /p

which reduces to the statement of the theorem.

Combining Theorem 3.4 with (1.1) yields the following corollary.

Corollary 3.3

EGp
(X) = pEF−1(W ) + (1 − p)EF (V )

Note that the mean of Gp is the same as the mean of a p : 1 − p mixture of F−1 and

F . Both vary linearly in p starting from EF (V ) and ending at EF−1(W ).

I continue on to consider the second and third moments associated with Gp and

then the second and third L-moments. In so doing, proofs of results are relegated to

the Appendix.

Theorem 3.5

VGp
(X) = p(1 − p)/3 − (2p − 1) ×

[

2pEF{V F (V )} − 2pEF (V ) + (1 − p)VF (V ) + p{EF (V )}2
]

Combining Theorem 3.5 with (1.2) yields the following corollary.

Corollary 3.4

VGp
(X) = p(1 − p)/3 + (2p − 1) {pVF−1(W ) − (1 − p)VF (V )}

Notice that VGp
is, as you might hope, a quadratic function of p going from VF (V )

when p = 0 through 1/12 when p = 1/2 to VF−1(W ) when p = 1 (in increasing,

decreasing, unimodal, or uniantimodal fashion as determined by the relative values

of VF (V ), 1/12 and VF−1(W )). The variance of Gp is of a quite different character
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from the variance of a p : 1 − p mixture of F−1 and F (which does not include the

uniform distribution). It is

Vmix = pVF−1(W ) + (1 − p)VF (V ) + p(1 − p){EF−1(W ) − EF (V )}2,

which depends on the means as well as the variances associated with F−1 and F .

It is worth a look at the skewness too. I will focus on SGp
(X) =

EGp
{X − EGp

(X)}3 while recognising that the (classical) skewness of is actually,

of course, SGp
(X)/V

3/2
Gp

(X).

Theorem 3.6

SGp
(X) = (2p − 1) ×

[

−p(1 − p)/4 − 3p2EF{V F 2(V )} − 3p(1 − p)EF{V 2F (V )}
+ 6p2EF{V F (V )} − 6p(2p − 1)EF{V F (V )}EF (V )

− (1 − p)2SF (V ) − p(3p − 1){EF (V )}3

+ 3p(1 − p)VF (V ) − 3p(1 − p)VF (V ) EF (V )

+ 3p(3p − 1){EF (V )}2 + p(1 − 4p)EF (V )
]

.

Combining Theorem 3.6 with (1.3) and the usual formula for SF (V ) yields the fol-

lowing corollary.

Corollary 3.5

SGp
(X) = (2p − 1) ×

(

p2SF−1(R) − (1 − p)2SF (V ) + p(1 − p)×
[

6E{V F (V )} − 3E{V 2F (V )} + {EF (V )}3

+ 3VF (V ){1 − EF (V )} − 3{EF (V )}2 + EF (V ) − 1/4
])

It is the case that SGp
is a cubic function of p going from SF (V ) when p = 0 through

0 when p = 1/2 to SF−1(W ) when p = 1. There is an extra ‘degree-of-freedom’ in the

shape of SGp
as a function of p, however, compared with that of VGp

.

Turning to L-moments, I first compute the second L-moment (the first being the

mean), namely the scale measure equal to one half of Gini’s mean difference. In

derivations (see the Appendix), I will directly use the generic formula

L2;H(T ) =

∫ 1

0

H(t){1 − H(t)} dt.

Theorem 3.7

L2;Gp
(X) = 2p(1 − p)/3 − (2p − 1) ×

[

2(1 − p)EF{V F (V )} − EF (V ) + pEF (V 2)
]

.
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The following intriguing corollary follows by combining Theorem 3.7 with (1.4).

Corollary 3.6

L2;Gp
(X) = 2p(1 − p)/3 + (2p − 1) {pL2;F−1(W ) − (1 − p)L2;F (V )} .

The parallels between results for the variance (Theorem 3.5, Corollary 3.4) and those

for the second L-moment (Theorem 3.7, Corollary 3.6) are very strong. L2;Gp
is also,

as you might hope, a quadratic function of p going from L2;F when p = 0 through

1/6 when p = 1/2 to L2;F−1 when p = 1 (in increasing, decreasing, unimodal, or

uniantimodal fashion as determined by the relative values of L2;F , 1/6 and L2;F−1).

Next, it’s the turn of a second skewness measure, the third L-moment

L3;H(T ) =

∫ 1

0

H(t){1 − H(t)}{2H(t) − 1} dt =

∫ 1

0

{3H2(t) − 2H3(t) − H(t)} dt.

(The L-skewness of Gp is actually L3;Gp
(X)/L2,Gp

(X).)

Theorem 3.8

L3;Gp
(X) = (2p − 1) ×

[

−p(1 − p)/2 + 6(1 − p)EF{V F (V )} + 3pEF (V 2) − 2p2EF (V 3)

− 6(1 − p)2EF{V F 2(V )} − 6p(1 − p)EF{V 2F (V )} − EF (V )
]

Combining Theorem 3.8 with (1.5) yields the final corollary in this subsection.

Corollary 3.7

L3;Gp
(X) = (2p − 1) ×

(

p2L3;F−1(W ) − (1 − p)2L3;F (V ) + p(1 − p)×
[

6EF{V F (V )} − 6E{V 2F (V )} + 3EF (V 2) − 2EF (V ) − 1/2
])

.

The parallels between results for the classical skewness (Theorem 3.6, Corollary 3.5)

and those for the third L-moment (Theorem 3.8, Corollary 3.7) are very strong too.

3.2 Equivalent formulations of Gp

Additionally define

Np(u) = pu + (1 − p)F−1(u) = Mp(F
−1(u))
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to be the c.d.f. of the usual p : 1−p mixture of U and F−1. Then the following lemma

is true: to see this, simply expand the left-hand side of Mp(M
−1
p (u)) = u.

Lemma 3.1

pN−1
p (u) + (1 − p)M−1

p (u) = u.

It follows that Gp can be written in the several equivalent ways in Corollary 3.8

to follow. The first of these is Definition 3.1 in terms of U and F , the second is

an equivalent definition in terms of U and F−1, and the third an equivalent, ‘more

symmetric’, definition in terms of U , F and F−1.

Corollary 3.8

Gp(u) =
{

(1 − p) u + (2p − 1)M−1
p (u)

}

/p

=
{

p u − (2p − 1)N−1
p (u)

}

/(1 − p)

= p M−1
p (u) + (1 − p) N−1

p (u) (3.1)

= M1−p(M
−1
p (u)) = N1−p(N

−1
p (u)).

In particular, formulation (3.1) shows Gp to be interpretable as the c.d.f. of the usual

p : 1 − p mixture of the complementary distributions of two distributions that are

themselves p : 1 − p mixtures, namely the p : 1 − p mixture of F and U and the

p : 1 − p mixture of U and F−1.

4. Example: a tractable family of complementary distributions

Arguably the simplest one-parameter choice for F is

F (u) = F (u; ℓ) = ℓ u2 + (1 − ℓ) u, 0 < u < 1,

with parameter ℓ ∈ [−1, 1]: this has linear densities, increasing (constant) decreasing

as ℓ > (=) < 0; moreover, F (u;−ℓ) = 1−F (1−u; ℓ). This is the family of distributions

on (0, 1) corresponding to the ‘quadratic rank transmutation map’ of Shaw & Buckley

(2009) (and hence underlying the ‘transmuted distributions’ of numerous more recent

papers e.g. Bourguignon, Ghosh & Cordeiro, 2016); see Figure 1 for some of their

densities.

Note that the complementary transmutation map is

F−1(u) =
{

√

4ℓu + (1 − ℓ)2 + (ℓ − 1)
}

/2ℓ

and that

Mp(u) = pℓu2 + (1 − pℓ)u = F (u; pℓ).
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Figure 1: Densities f(u; ℓ) = 2ℓu + 1 − ℓ plotted for ℓ = −1(0.2)1 using different

line-styles for clarity: towards the left, higher curves correspond to smaller ℓ.

Utilising this choice for F in Gp results in the two-parameter family of distributions

with

Gp(u; ℓ) =
{

(2p − 1)
√

4pℓu + (1 − pℓ)2 + 2(1 − p)pℓu + (2p − 1)(pℓ − 1)
}

/2p2ℓ.

This distribution includes all the F ’s, when p = 0, all the F−1’s, when p = 1,

and many distributions ‘in between’ (including the uniform when p = 1/2). The

distribution inherits from F the property that Gp(u;−ℓ) = 1 − Gp(1 − u; ℓ). These

cdfs are plotted for a range of values of p in Figure 2(a) when ℓ = 1; they correspond

to F (u) = u2, F−1(u) =
√

u.

The densities of this family of distributions are

gp(u; ℓ) =
{

1 − p + (2p − 1)/
√

4pℓu + (1 − pℓ)2
}

/p.

They are necessarily monotone because F always is: if f(u; ℓ) increases (decreases)

[that is, ℓ > 0 (ℓ < 0)] then gp(u; ℓ) increases (decreases) when 0 < p < 1/2

(1/2 < p < 1) (as is also clear directly). As u → 0, gp(u; ℓ) → (1 − ℓ + ℓp)/(1 − ℓp)

while as u → 1, gp(u; ℓ) → (1+ℓ−ℓp)/(1+ℓp). The pdfs corresponding to the cdfs in

Figure 2(a) are shown in Figure 2(b). (It is worth stressing again that the densities

gp(1 − u; ℓ) are also in the family since they equate to gp(u;−ℓ).)

Because EF (·;ℓ)(V ) = (3 + ℓ)/6, it is found that

EGp(·;ℓ)(X) = 1/2 − (2p − 1) ℓ/6.

Also, because VF (·;ℓ)(V ) = (3 − ℓ2)/36 and EF (·;ℓ){V F (V ; ℓ)} = (20 + 5ℓ − ℓ2)/60,

VGp(·;ℓ)(X) = 1/12 − (2p − 1)(4p − 5) ℓ2/180
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Figure 2: (a) Gp(u; 1) and (b) gp(u; 1) plotted for p = 0(0.1)1, using different line-

styles for clarity and linkage; in (a) and towards the left in (b), higher curves corre-

spond to larger p.

ensues. And since SF (·;ℓ)(V ) = ℓ(5ℓ2 − 9)/540, EF (·;ℓ){V 2F (V ; ℓ)} = (15+6ℓ− ℓ2)/60

and EF (·;ℓ){V F 2(V ; ℓ)} = (105 + 21ℓ − 7ℓ2 + ℓ3)/420,

SGp(·;ℓ)(X) = (2p − 1) ℓ
{

63 − (41p2 − 77p + 35) ℓ2
}

/3780.

Using the same building blocks, it is also found that

L2;Gp(·;ℓ)(X) = 1/6 − (2p − 1)(p − 1) ℓ2/30

and

L3;Gp(·;ℓ)(X) = (2p − 1) ℓ
{

7(3p2 + 2) − 6(1 − p)2 ℓ2
}

/420.

There were many tedious manipulations here, checked against special cases.

5. Additional remarks

5.1 On complementary distributions

Specifics of the complementary beta distribution are given in Jones (2002). Except

for power law special cases, complementary beta and beta distributions differ, but

it turns out that each complementary beta distribution is similar to a beta distri-

bution with its parameters replaced by their reciprocals. Kumaraswamy distribu-

tions (Kumaraswamy, 1980, Jones, 2008), on the other hand, have c.d.f.s of the form

FK(v; α, β) = 1 − (1 − vα)β, α, β > 0; complementary Kumaraswamy distributions

therefore have c.d.f.s of the form

F−1
K (v; α, β) =

{

1 − (1 − v)1/β
}1/α

= 1 − FK(1 − v; 1/β, 1/α);
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if V ∼ FK(·; 1/β, 1/α), then the complementary Kumaraswamy distribution is simply

the distribution of 1−V . (As Tahir & Nadarajah, 2015, point out, this distribution un-

derlies the ‘exponentiated generalized distributions’ of Cordeiro, Ortega & da Cunha,

2013.)

5.2 On families of complementary distributions

This article has been concerned with understanding certain theoretical aspects of con-

tinuous distributions on (0, 1); its purpose has not specifically been to add distribu-

tions of particular practical merit. For instance, with two parameters, one can expect

to be able to control a distribution which includes both monotone and unimodal/anti-

unimodal densities (e.g. the beta distribution) and it is unclear to what extent it is

beneficial to employ a family like Gp(·; ℓ) of Section 4 with more than one parameter

yet monotone densities only. The latter family tractably gives rise to the further

two-parameter family of two-piece distributions with densities

γp(u; ℓ) =

{

gp(2u; ℓ), 0 < u ≤ 1/2,

gp (2(1 − u)); ℓ) , 1/2 < u < 1,

but these are limited to being symmetric about u = 1/2 and have a possibly unap-

pealing cusp in their densities at u = 1/2.
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Appendix: proofs of results in Section 3

Using

EH(T 2) = 1 − 2

∫ 1

0

tH(t) dt and

∫ 1

0

tH−1(t) dt = EH{TH(T )},

gives rise to the following proof:

Proof of Theorem 3.5

EGp
(X2) = 1 − 2

∫ 1

0

xGp(x)dx

= 1 − 2

{

(1 − p)/3 + (2p − 1)

∫ 1

0

xM−1
p (x)dx

}

/p

= 1 − 2
[

(1 − p)/3 + (2p − 1)EMp
{SMp(S)}

]

/p

= 1 − 2 ((1 − p)/3 + (2p − 1)×
[

p2EF{V F (V )} + p(1 − p){1 + EF (V 2)}/2 + (1 − p)2/3
])

/p

= p(2p + 1)/3 − 2p(2p − 1)EF{V F (V )} − (2p − 1)(1 − p)EF (V 2).

The theorem results by elementary methods.

Using

EH(T 3) = 1 − 3

∫ 1

0

t2H(t) dt and

∫ 1

0

t2H−1(t) dt = EH{TH2(T )}

the proof of Theorem 3.6 ensues:
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Proof of Theorem 3.6

EGp
(X3) = 1 − 3

∫ 1

0

x2Gp(x)dx

= 1 − 3

{

(1 − p)/4 + (2p − 1)

∫ 1

0

x2M−1
p (x)dx

}

/p

= 1 − 3
[

(1 − p)/4 + (2p − 1)EMp
{SM2

p (S)}
]

/p

= 1 − 3
(

(1 − p)/4 + (2p − 1) ×
[

(1 − p)(p2 + 2p + 3)/12

+ p3EF{V F 2(V )} + p2(1 − p)EF{V 2F (V )}
+ p(1 − p)2EF (V 3)/3

])

/p

= p(1 + p + 2p2)/4 − (2p − 1) ×
[

3p2EF{V F 2(V )}
+ 3p(1 − p)EF{V 2F (V )} + (1 − p)2EF (V 3)

]

.

Therefore,

SGp
(X) = p(1 + p + 2p2)/4 − (2p − 1) ×

[

3p2EF{V F 2(V )}
+3p(1 − p)EF{V 2F (V )} + (1 − p)2EF (V 3)

]

− 3{p − (2p − 1)EF (V )} × [p(2p + 1)/3

− (2p − 1)
{

2pE{V F (V )} + (1 − p)EF (V 2)
}]

+ 2
[

p3 − 3p2(2p − 1)EF (V ) + 3p(2p − 1)2{EF (V )}2

− (2p − 1)3{EF (V )}3
]

which can be rearranged to give the result of the theorem.

Proof of Theorem 3.7

L2;Gp
=

∫ 1

0

[

p(1 − p)u − (1 − p)2u2 − 2(2p − 1)(1 − p)uM−1
p (u)

+ p(2p − 1)M−1
p (u) − (2p − 1)2{M−1

p (u)}2
]

/p2du

=
[

p(1 − p)/2 − (1 − p)2/3 − 2(2p − 1)(1 − p)EMp
{SMp(S)}

+ p(2p − 1)EMp
(S) − (2p − 1)2EMp

(S2)
]

/p2

=
(

p(1 − p)/2 − (1 − p)2/3 − 2(2p − 1)(1 − p)×
[

p2EF{V F (V )} + p(1 − p){1 + EF (V 2)}/2 + (1 − p)2/3
]

+ p(2p − 1) {pEF (V ) + 1 − p/2}
− (2p − 1)2

{

pEF (V 2) + (1 − p)/3
})

/p2.

Further manipulation completes the proof.
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Proof of Theorem 3.8

L3;Gp
=

∫ 1

0

[

3p(1 − p)2u2 − 2(1 − p)3u3 − p2(1 − p)u

+ 6p(2p − 1)(1 − p)uM−1
p (u) − 6(1 − p)2(2p − 1)u2M−1

p (u)

− 6(1 − p)(2p − 1)2u{M−1
p (u)}2 + 3p(2p − 1)2{M−1

p (u)}2

− 2(2p − 1)3{M−1
p (u)}3 − p2(2p − 1)M−1

p (u)
]

/p3 du

=
[

p(1 − p)2 − (1 − p)3/2 − p2(1 − p)/2

+ 6p(2p − 1)(1 − p)EMp
{SMp(S)} − 6(1 − p)2(2p − 1)EMp

{SM2
p (S)}

− 6(1 − p)(2p − 1)2EMp
{S2Mp(S)} + 3p(2p − 1)2EMp

(S2)

− 2(2p − 1)3EMp
(S3) − p2(2p − 1)EMp

(S)
]

/p3

=
(

(1 − p)(4p − 4p2 − 1)/2 + 6p(2p − 1)(1 − p)
[

p2EF{V F (V )}
+ p(1 − p){1 + EF (V 2)}/2 + (1 − p)2/3

]

− 6(1 − p)2(2p − 1)×
[

(1 − p)(p2 + 2p + 3)/12 + p3EF{V F 2(V )} + p2(1 − p)EF{V 2F (V )}
+ p(1 − p)2EF (V 3)/3

]

− 6(1 − p)(2p − 1)2
[

p2EF{V 2F (V )}
+ p(1 − p){1 + 2EF (V 3)}/3 + (1 − p)2/4

]

+ 3p(2p − 1)2
{

(1 − p)/3 + pEF (V 2)
}

− 2(2p − 1)3
{

(1 − p)/4 + pEF (V 3)
}

− p2(2p − 1) {(1 − p)/2 + pEF (V )}
)

/p3

=
[

p4(1 − p)(1 − 2p)/2 + 6p3(2p − 1)(1 − p)EF{V F (V )}
+ 3p4(2p − 1)EF (V 2) − 6p3(1 − p)2(2p − 1)EF{V F 2(V )}
− 6p4(1 − p)(2p − 1)EF{V 2F (V )} − 2p5(2p − 1)EF (V 3)

− p3(2p − 1)EF (V )
]

/p3

and the result follows almost immediately.
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