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Abstract

This paper takes an information-geometric approach to the challenging issue of goodness-
of-fit testing in the high dimensional, low sample size context where, potentially, boundary
effects dominate. The main contributions of this paper are threefold: first, we present, and
prove, two new theorems on the behaviour of commonly used test statistics in this context;
second, we investigate, in the novel environment of the extended multinomial model, the
links between information geometry based divergences and standard goodness-of-fit statistics,
allowing us to formalise relationships which have been missing in the literature; finally, we use
simulation studies to validate and illustrate our theoretical results and to explore, currently
open, research questions about the way that discretisation effects can dominate sampling
distributions near the boundary. Novelly accommodating these discretisation effects contrasts
sharply with the essentially continuous approach of skewness and other corrections flowing
from standard higher-order asymptotic analysis.

Keywords: Extended Multinomial Models; Goodness-of-fit testing; Information geometry.

1 Introduction

We start by emphasising the threefold achievements of this paper, spelt out, in detail, in
terms of the paper’s section structure below. First, we present and prove two new theorems
on the behaviour of some standard goodness-of-fit statistics in the high dimensional, low
sample size context, focusing on behaviour ‘near the boundary’ of the extended multinomial
family. We also comment on the methods of proof which allow explicit calculations of higher
order moments in this context. Second, working again explicitly in the extended multinomial
context, we fill a hole in the literature in linking information-geometric based divergences and
standard goodness-of-fit statistics. Finally, we use simulation studies to explore discretisation
effects, that can dominate sampling distributions ‘near the boundary’. Indeed we illustrate
and explore how, in the high dimensional, low sample size context, all distributions are
effected by boundary effects. We also used these simulation results to explore, currently open,
research questions. As can be seen, the overarching theme is the importance of working in
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the geometry of the extended exponential family, [16], rather than the traditional, manifold
based, structure of information geometry.

In more detail, the paper extends, and builds on, the results of [35] and we use notation
and definitions consistently across these two papers. Both papers investigate the issue of
goodness-of-fit testing in the high dimensional, sparse extended multinomial context, using
the tools of Computational Information Geometry (CIG), [16].

Section 2 gives formal proofs of two results, Theorems 1 and 2, which were announced
in [35]. These results explore the sampling performance of standard goodness-of-fit statistics
– Wald, Pearson’s χ2, score and deviance – in the sparse setting. In particular, they look
at the case where the data generation process is ‘close to the boundary’ of the parameter
space where one or more cell probabilities vanish. This complements results in much of the
literature where the centre of the parameter space – i.e. the uniform distribution – is often
the focus of attention.

Section 3 starts with a review of the links between Information Geometry (IG), [4], and
goodness-of-fit testing. In particular, it looks at the power family of Cressie and Read, [15],
[39], in terms of the geometric theory of divergences. In the case of regular exponential
families these links have been well-explored in the literature, [29], as has the corresponding
sampling behaviour, [1]. What is novel here is the exploration of the geometry with respect
to the closure of the exponential family, i.e. the extended multinomial model, a key tool in
CIG. We illustrate how the boundary can dominate the statistical properties in ways that are
surprising compared to standard – and even high-order – analyses, which are asymptotic in
sample size.

Section 4 explores, through simulation experiments, the consequences of working in the
sparse multinomial setting, with the design of the numerical experiments being inspired by
the information geometry.

2 Sampling distributions in the sparse case

One of the first major impacts that Information Geometry had on statistical practice was
through the geometric analysis of higher order asymptotic theory, see [2], [9]. Geometric
interpretations and invariant expressions of terms in the higher order corrections to approx-
imations of sampling distributions are a good example, [2, Chapter 4]. Geometric terms are
used to correct for skewness and other higher order moment (cumulant) issues in the sampling
distributions. However, these correction terms grow very large near the boundary, [16], [5].
Since this region plays a key role in modelling in the sparse setting – the MLE often being on
the boundary – extensions to the classical theory are needed. This paper and [35] together
start such a development. This work is related to similar ideas in categorical, (hierarchical)
log-linear and graphical models, [33], [27], [24], and [16]. As stated in [24] ‘[their] statistical
properties under sparse settings are still very poorly understood. As a result, [analysis of
such data] remains exceptionally difficult’.

In this section we show why the Wald – equivalently, the Pearson χ2 and score statistics
– are unworkable when near the boundary of the extended multinomial model, but that the
deviance has a simple, accurate and tractable sampling distribution even for moderate sample
sizes. We also show how the higher moments of the deviance are easily computable, allowing
in principle for higher order adjustments. However, we also make some observations about
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the appropriateness of these classical adjustments in Section 4.
First, we define some notation, consistent with that of [35]. With i ranging over {0, 1, ..., k},

let n = (ni) ∼ Multinomial (N, (πi)), where here each πi > 0. In this context the Wald, Pear-
son’s χ2, and score statistics all coincide, their common value, W , being

W :=
k∑
i=0

(πi − ni/N)2

πi
≡ 1

N2

k∑
i=0

n2i
πi
− 1.

Defining π(α) :=
∑

i π
α
i we note the inequality, for each m ≥ 1,

π(−m) − (k + 1)m+1 ≥ 0,

in which equality holds if and only if πi≡1/(k+ 1) – i.e. iff (πi) is uniform. We then have the
following theorem, which establishes that the statistic W is unworkable as πmin := min(πi)→
0 for fixed k and N .

Theorem 1. For k > 1 and N ≥ 6, the first three moments of W are:

E(W ) =
k

N
, V ar(W ) =

{
π(−1) − (k + 1)2

}
+ 2k(N − 1)

N3

and E[{W − E(W )}3] given by{
π(−2) − (k + 1)3

}
− (3k + 25− 22N)

{
π(−1) − (k + 1)2

}
+ g(k,N)

N5
,

where g(k,N) = 4(N − 1)k(k + 2N − 5) > 0.
In particular, for fixed k and N , as πmin → 0

V ar(W )→∞ and γ(W )→ +∞,

where γ(W ) := E[{W − E(W )}3]/{V ar(W )}3/2.

A detailed proof is found in Appendix A.1 and we give here an outline of its important
features. The machinery developed is capable of delivering much more than a proof of Theo-
rem 1. As indicated there, it provides a generic way to explicitly compute arbitrary moments
or mixed moments of multinomial counts and could in principle be implemented by computer
algebra. Overall, there are four stages. A key recurrence relation is first established and
then, second, exploited to deliver moments of a single cell count. Third, mixed moments of
any order are derived from those of lower order, exploiting a certain functional dependence.
Finally, results are combined to find the first three moments of W , higher moments being
similarly obtainable.

The practical implication of Theorem 1 is that standard first, and higher-order, asymptotic
approximations to the sampling distribution of the Wald, χ2 and score statistics break down
when the data generation process is ‘close to’ the boundary where at least one cell probability
is zero. This result is qualitatively similar to results in [5] which shows how asymptotic
approximations to the distribution of the maximum likelihood estimate fail, for example in
the case of logistic regression, when the boundary is close in terms of distances as defined by
the Fisher information.
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Unlike statistics considered in Theorem 1, the deviance has a workable distribution in
the same limit: that is, for fixed N and k as we approach the boundary of the probability
simplex. In sharp contrast to that theorem we see the very stable and workable behaviour of
the k-asymptotic approximation to the distribution of the deviance, in which the number of
cells increases without limit.

Define the deviance D via

D/2 =
∑
{0≤i≤k:ni>0}

ni log(ni/N)−
k∑
i=0

ni log(πi)

=
∑
{0≤i≤k:ni>0}

ni log(ni/µi),

where µi := E(ni) = Nπi. We will exploit the characterisation that the multinomial ran-
dom vector (ni) has the same distribution as a vector of independent Poisson random vari-
ables conditioned on their sum. Specifically, let the elements of (n∗i ) be independently dis-

tributed as Poisson Po(µi). Then, N∗ :=
∑k

i=0 n
∗
i ∼ Po(N), while (ni) := (n∗i |N∗ = N) ∼

Multinomial(N, (πi)). Define the vector

S∗ :=

(
N∗

D∗/2

)
=

k∑
i=0

(
n∗i

n∗i log(n∗i /µi)

)
,

where D∗ is defined implicitly and 0 log 0 := 0. The terms ν, τ and ρ are defined by the first
two moments of S∗ via the vectors(

N
ν

)
:= E(S∗) =

(
N∑k

i=0E(n∗i log (n∗i /µi))

)
, (1)

(
N ρτ

√
N

· τ2

)
:= Cov(S∗) =

(
N

∑k
i=0Ci

·
∑k

i=0 Vi

)
, (2)

where Ci := Cov(n∗i , n
∗
i log(n∗i /µi)) and Vi := V ar(n∗i log(n∗i /µi)).

Theorem 2. Each of the terms ν, τ and ρ remains bounded as πmin → 0.

We start with some preliminary remarks. We use the following notation. N := {1, 2, ...}
denotes the natural numbers, while N0 := {0} ∪ N . Throughout, X ∼ Po(µ) denotes a
Poisson random variable having positive mean µ – that is, X is discrete with support N0 and
probability mass function p : N0 → (0, 1) given by:

p(x) := e−µµx/x! (µ > 0). (3)

Putting:
∀m ∈ N0, F

[m](µ) := Pr(X ≤ m) =
∑m

x=0p(x) ∈ (0, 1), (4)

for given µ, {1 − F [m](µ)} is strictly decreasing with m, vanishing as m → ∞. For all
(x,m) ∈ N 2

0 , we define x(m) by:

x(0) := 1; x(m) := x(x− 1)...(x− (m− 1)) (m ∈ N ) (5)

so that, if x ≥ m, x(m) = x!/(x−m)!.
The set A0 comprises all functions a0 : (0,∞)→ R such that, as ξ → 0+:
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(i) a0(ξ) tends to an infinite limit a0(0+) ∈ {−∞,+∞}, while: (ii) ξa0(ξ)→ 0.

Of particular interest here, by l’Hôpital’s rule,

∀m ∈ N , (log)m ∈ A0, (6)

where (log)m : ξ → (log ξ)m (ξ > 0). For each a0 ∈ A0, a0 denotes its continuous extension
from (0,∞) to [0,∞) – that is: a0(0) := a0(0+); a0(ξ) := a0(ξ) (ξ > 0) – while, appealing
to continuity, we also define 0a0(0) := 0. Overall, denoting the extended reals by R :=
R ∪ {−∞} ∪ {+∞}, and putting

A := {a : N0 → R such that 0a(0) = 0}

we have that A contains the disjoint union:

{all functions a : N0 → R} ∪ {a0|N0 : a0 ∈ A0}.

We refer to a0|N0 as the member of A based on a0 ∈ A0.
We make repeated use of two simple facts. First:

∀x ∈ N0, 0 ≤ log(x+ 1) ≤ x, (7)

equality holding in both places if, and only if, x = 0. And, second, (3) and (5) give:

∀(x,m) ∈ N 2
0 with x ≥ m, x(m)p(x) = µmp(x−m) (8)

so that, by definition of A:

∀m ∈ N0,∀a ∈ A, E(X(m)a(X)) = µmE(a(X +m)), (9)

equality holding trivially when m = 0. In particular, taking a = 1 ∈ A – that is, a(x) = 1
(x ∈ N0) – (9) recovers, at once, the Poisson factorial moments:

∀m ∈ N0, E(X(m)) = µm

whence, in further particular, we also recover:

E(X) = µ, E(X2) = µ2 + µ and E(X3) = µ3 + 3µ2 + µ. (10)

We are ready now to prove Theorem 2.

Proof of Theorem 2. In view of (1) and (2), it suffices to show that the first two moments of
S∗ remain bounded as πmin → 0. By the Cauchy-Schwarz inequality this, in turn, is a direct
consequence of the following result.

Lemma 3. Let X ∼ Po(µ) (µ > 0) and put Xµ := X log(X/µ), with 0 log 0 := 0. Then,
there exist b(1), b(2) : (0,∞)→ (0,∞) such that:

(a) 0 ≤ E(Xµ) ≤ b(1)(µ) and 0 ≤ E(X2
µ) ≤ b(2)(µ), while:

(b) for i = 1, 2 : b(i)(µ)→ 0 as µ→ 0+.
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Proof. By (6), a
(1)
0 (ξ) := log(ξ/µ) ∈ A0. Taking m = 1 and a ∈ A based on a

(1)
0 in (9), and

using (7), gives at once the stated bounds on E(Xµ) with b(1)(µ) = µ(µ− logµ) which does,
indeed, tend to 0 as µ→ 0+.

Further, let a
(2)
0 (ξ) := ξ(log(ξ/µ))2. Taking m = 1 and a as the restriction of a

(2)
0 to N0

in (9) gives E(X2
µ) = µE(a(2)(X + 1)). Noting that

{x ∈ N0 : log((x+ 1)/µ) < 0} =

{
∅ (µ ≤ 1)

{0, ..., µ− 2} (µ > 1)
,

in which µ denotes the smallest integer greater than or equal to µ, and putting

B(µ) :=

{
0 (µ ≤ 1)

µ
∑µ−2

x=0a
(2)(x+ 1)p(x) (µ > 1)

,

(7), (10) and l’Hôpital’s rule give the stated bounds on E(X2
µ), with

b(2)(µ) = B(µ) + µ
∑∞

x=0(x+ 1)(x− logµ)2p(x)

= B(µ) + µE{X3 +X2(1− 2 logµ) +X((logµ)2 − 2 logµ) + (log µ)2}
= B(µ) + µ4 + 4µ3 + 2µ2 + µ(logµ)2 + (µ logµ)2 − 2µ(µ+ 2)(µ logµ)

which does, indeed, tend to 0 as µ→ 0+.

As a result of Theorem 2 the distribution of the deviance is stable in this limit. Further,
as noted in [35], each of ν, τ and ρ can be easily and accurately approximated by standard
truncate and bound methods in the limit as πmin → 0. These are detailed in Appendix A.2.

3 Divergences and Goodness-of-fit

The emphasis of this section is the importance of the boundary of the extended multinomial
when understanding the links between information geometric divergences and families of
goodness-of-fit statistics. A set of well-known results linking the Power-Divergence family
and information geometry in the manifold sense are surveyed, for completeness, in Sections
3.1, 3.2 and 3.3. The extension to the extended multinomial family is discussed in Section
3.4, where we make clear how the global behaviour of divergences is dominated by boundary
effects. This complements the usual local analysis which links divegences with the Fisher
information, [2]. Perhaps the key point is, since counts in the data can be zero, information
geometric structures should also allow probabilities to be zero. Hence closures of exponential
families seem the correct geometric object to work on.

3.1 The Power-Divergence family

The results of Section 2 concern the boundary behaviour of two important members of a
rich class of goodness-of-fit statistics. An important unifying framework which encompasses
these, and other important, statistics can be found in [39, page 16] with the, so-called, Power-
Divergence statistics. These are defined, for −∞ < λ <∞ by

2NIλ
( n
N

: π
)

:=
2

λ(λ+ 1)

k∑
i=0

ni

[(
ni
Nπi

)λ
− 1

]
, (11)
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with the cases λ = −1, 0 being defined by taking the appropriate limit to give

lim
λ→−1

2NIλ
( n
N

: π
)

= 2

k∑
i=0

Nπi log (Nπi/ni) , lim
λ→0

2NIλ
( n
N

: π
)

= 2

k∑
i=0

ni log (ni/Nπi) .

Important special cases are shown in Table 1, (whose first column is described below in
Section 3.3 ) and we also note the case λ = 2/3, which Read and Cressie recommend, [39,
page 79], as a reasonably robust statistic with an easily calculable critical value for small N .
It, in a sense, lies ‘between’ the Pearson χ2 and deviance statistics which we compared in §2.

α := 1 + 2λ λ Formula Name

3 1
∑k
i=0

(ni−Nπi)2
Nπi

Pearson χ2

7/3 2/3 9
5

∑k
i=0 ni

[(
ni
Nπi

) 2
3 − 1

]
Read-Cressie

1 0 2
∑k
i=0 ni log (ni/Nπi) twice log-likelihood (deviance)

0 − 1
2 4

∑k
i=0

(√
ni −

√
Nπi

)2
Freeman-Tukey or Hellinger

-1 -1 2
∑k
i=0Nπi log (Nπi/ni) twice modified log-likelihood

-3 -2
∑k
i=0

(ni−Nπi)2
ni

Neyman χ2

Table 1: Special cases of the Power-divergence statistics.

This paper is primarily concerned with the sparse case where many of the ni counts are
zero and we also are interested in letting probabilities, πi, becoming arbitrarily small, or even
zero.

3.2 Literature review

Before we look at this, we briefly review the literature on the geometry of goodness-of-fit
statistics. A good source for the historical developments, in the discrete context, can be
found in [39, pages 131-153] and [1]. Important examples include the analysis of contingency
tables, log-linear and discrete graphical models. Testing is often used to check the consis-
tency of a parametric model with given data, and to check dependency assumptions such as
independence between categorical variables. We note an important caveat though: as pointed
out by [21], [14], the fact that a parametric model ‘passes’ a goodness-of-fit test constrains
the resulting inference only weakly. The essential point here is that goodness-of-fit is a nec-
essary, but not sufficient, condition for model choice since, in general, many models will be
empirically supported. This issue has recently been explored geometrically in [6] using CIG.

There have been many possible test statistics proposed for goodness-of-fit testing and one
of the attractions of the Power-Divergence family, defined in (11), is that the most important
ones are included in the family and indexed by a single scalar λ. When there is a choice of
test statistic, of course, different inferences can result from different choices. One of the main
themes of [39] is to give the analyst insight about selecting a particular λ. Key considerations
for making the selection of λ include: the tractability of the sampling distribution, its power
against important alternatives, and interpretation when hypotheses are rejected.

7



The first order, asymptotic in N , χ2-sampling distribution for all members of the Power-
Divergence family, which is appropriate when all observed counts are ‘large enough’, is the
most commonly used tool, and a very attractive feature of the family. However, this can fail
badly in the ‘sparse’ case and when the model is close to the boundary. Elementary, moment
based corrections, to improve small sample performance, are discussed in [39, Chapter 5].
More formal asymptotic approaches to these issues include the doubly asymptotic, in N and
k, approach of [37], discussed in §2 and similar normal approximation ideas in [38]. See also
[28]. Extensive simulation experiments have been undertaken to learn in practice what ‘large
enough’ means, see [31], [39, Section 5.3], and [32].

When, as is common, there are nuisance parameters to be estimated, [36] points out that
it is the sampling distribution conditional upon these estimates which needs to be approxi-
mated, and proposes higher order methods based on the Edgeworth expansion. Simulation
approaches are often used in the conditional context due to the common intractability of
the conditional distribution, [25], [30], and importance sampling methods play an important
role, see [10], [13] and [34]. Other approaches to investigate the sampling distribution include
jackknifing, [42], using the Chen-Stein method, [26] and detailed asymptotic analysis in [23],
[43], and [7].

In very high dimensional model spaces, considerations of the power of tests rarely generates
uniformly best procedures but, we feel, geometry can be an important tool in understanding
the choices that need to be made. Further, [39, Section 5.4], states the situation is ‘com-
plicated’, showing this through simulation experiments. One of the reasons for Read and
Cressie’s preferred choice of λ = 2/3 is its good power against some important types of alter-
native – the so-called bump or dip cases – as well as the relative tractability of its sampling
distribution under the null. Other considerations about power can be found in [44] which
looks specifically at mixture model based alternatives.

3.3 Links with Information Geometry

At the time that the Power-Divergence family was being examined there was a parallel de-
velopment in Information Geometry but, oddly, it seemed to have taken some time before
the links between the two areas were fully recognised. A good treatment of these links can
be found in [29, Chapter 9]. Since it is important to understand the extreme values of diver-
gence functions, considerations of convexity clearly can play an important role. The general
class of Bregman divergences, [12], [29, Page 240] and [3, Page 13], is very useful here. For
each Bregman divergence there will exist affine parameters of the exponential family in which
the divergence function is convex. In the class of product Poisson models – which are the
key building blocks of log-linear models – all members of the Power-Divergence family have
the Bregman property. These are then α-divergences, capable of generating the complete
Information Geometry of the model, [3], with the link between α and λ given in Table 1.
The α-representation highlights the duality properties, which are a cornerstone of Informa-
tion Geometry, but which is rather hidden in the λ representation. The Bregman divergence
representation for the Poisson is given in Table 2. The divergence parameter, in which we
have convexity, is shown for each λ, as is the so-called potential function which generates the
complete information geometry for these models.
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λ α Divergence Dλ(µ1, µ2) Divergence parameter ξ Potential

-1 -1 µ1 − µ2 − µ2 (log(µ1)− log(µ2)) ξ = log(µ) exp(ξ)

0 1 µ2 − µ1 − µ1 (log(µ2)− log(µ1)) ξ = µ ξ log(ξ)− ξ

λ 6= 0,−1 α 6= ±1

(
λ∗µ1−λ∗µ2−µ2

((
µ1
µ2

)λ∗
−1

))
λ∗(1−λ∗) ξ = 1

λ∗µ
λ∗ (λ∗ξ)1/λ

∗

1−λ∗

Table 2: Power-divergence in the Poisson model with mean µ, where λ∗ = 1− λ.

3.4 Extended multinomial case

In this paper we are focusing on the class of log-linear models where the multinomial is the
underlying class of distributions – that is we condition on the sample size, N , being fixed in
the product Poisson space. In particular we focus on extended multinomials which includes
the closure of the multinomials, so we have a boundary. Due to the conditioning, which
induces curvature, only the cases where λ = 0,−1 remain Bregman divergences, but all are
still divergences in the sense of being Csiszár f -divergences, [18] and [19].

The closure of an exponential family, see [8], [11], [33] and [20], and its application in the
theory of log-linear models have been explored by [22], [27] , [40] and [24]. The key here is
understanding the limiting behaviour in the natural, α = 1 in the sense of [2], parameter
space. This can be done by considering the polar dual [17] or, alternatively, the directions
of recession, [27] or [40]. The boundary polytope determines key statistical properties of the
model including the behaviour of the sampling distribution of (functions of) the MLE and
the shape of level sets of divergence functions.

Figures 1 and 2 show level sets of the α = ±1 Power-Divergences in the (+1)-affine and
(−1)-affine parameters, panels (a) and (b) respectively, for the k = 2 extended multinomial
model. The boundary polytope in this case is a simple triangle ‘at infinity’ and the shape of
this is strongly reflected in the behaviour of the level sets. In Fig. 1 we show, in the simplex{

(π0, π1, π2)|
∑2

i=0 πi = 1, πi ≥ 0
}

, the level sets of the α = −1 divergence, which is, in the

Csiszár f -divergence form,

K(π0, π) :=

2∑
i=0

log

(
π0i
πi

)
π0i .

The figures show how in Panel (a) the directions of recession dominate the shape of level sets
and in Panel (b) the duals of these directions, (i.e. the vertices of the simplex) each have
different maximal behaviour. The lack of convexity of the level sets in Panel (a) corresponds
to the fact that the natural parameters are not the affine divergence parameters for this
divergence, so we do not expect convex behaviour. In Panel (b) we do get non-convex level
sets, as expected.

Figure 2 shows the same story but this time for the dual divergence,

K∗(π, π0) := K(π0, π).

Now the affine divergence parameters are shown in Panel (a), the natural parameters. We see
that in the limit the shape of the divergence is converging to that of the polar of the boundary
polytope. In general, local behaviour is quadratic but boundary behaviour is polygonal.
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Figure 1: Level sets of K(π0, π), for fixed π0 = (16 ,
2
6 ,

3
6) in: (a) the natural parameters, and

(b) the mean parameters.
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Figure 2: Level sets of K∗(π0, π), for fixed π0 = (16 ,
2
6 ,

3
6) in: (a) the natural parameters,

and (b) the mean parameters.

4 Simulation studies

In this section, we undertake simulation studies to numerically explore what has been dis-
cussed above. Separate sub-sections address three general topics – focusing on one particular
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instance of each, as follows:

1. the transition as (N, k) varies between discrete and continuous features of the sampling
distributions of goodness-of-fit statistics – focusing on the behaviour of the deviance at
the uniform discrete distribution;

2. the comparative behaviour of a range of Power-Divergence statistics – focusing on the
relative stability of their sampling distributions near the boundary; and:

3. the lack of uniformity, across the parameter space, of the finite sample adequacy of
standard asymptotic sampling distributions – focusing on testing independence in 2× 2
contingency tables.

For each topic, the results presented invite further investigation.

4.1 Transition between discrete and continuous features of
sampling distributions
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(a) Null distribution, N =  20
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Figure 3: k = 100, N = 20
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(a) Null distribution, N =  40
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Figure 4: k = 100, N = 40
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Earlier work [35] used the decomposition:

D∗/2 =
∑

{0≤i≤k:n∗
i>0}

n∗i log(n∗i /µi) = Γ∗ + ∆∗,

Γ∗ :=

k∑
i=0

αin
∗
i and ∆∗ :=

∑
{0≤i≤k:n∗

i>1}

n∗i log n∗i ≥ 0, where αi := − logµi,

to show that a particularly bad case for the adequacy of any continuous approximation to the
sampling distribution of the deviance D := D∗|(N∗ = N) is the uniform discrete distribution:
πi = 1/(k + 1). For, in this case, the Γ∗ term contributes a constant to the deviance, while
the ∆∗ term has no contributions from cells with 0 or 1 observations – these being in the
vast majority in the N << k situation considered here. In other words, all of the variability
in D comes from that between the ni log ni values for the, relatively rare, cell counts above
1. This gives rise to a discreteness phenomenon termed ‘granularity’ in [35], whose meaning
was conveyed graphically there in the case N = 30 and k = 200. Work by Holst [28] predicts
that continuous – indeed, normal – approximations will improve with larger values of N/k,
as is intuitive. Remarkably, simply doubling the sample size to N = 60 was shown in [35] to
be sufficient to give a good enough approximation for most goodness-of-fit testing purposes.
In other words, N being 30% of k = 200 was found to be good enough for practical purposes.

Here, we illustrate the role of k-asymptotics (Section 2) in this transition between discrete
and continuous features by repeating the above analyses for different values of k. Figures 3
and 4, where k = 100 while N = 20 and 40 respectively, are qualitatively the same as those
presented in [35]. The difference here is that the smaller value of k means that a higher value
of N/k (40%) is needed in Fig. 4 to adequately remove the granularity evident in Fig. 3.
For k = 400, the figures with N = 50 and N = 100 (omitted here for brevity) are, again,
qualitatively the same as in [35], the larger value of k needing only a smaller value of N/k
(25%) for practical purposes. Note the QQ-plots used in these two figures are relative to
normal quantiles.

The results of this section show the universality of boundary effects. The simulations of
Figs. 3 and 4 are undertaken under the uniform model, which might be felt to be far from
the boundary. The results show, in fact, that in the high dimensional, low sample size case,
all distributions are ‘close to’ the boundary and that discretisation effects can dominate.

4.2 Comparative behaviour of Power-Divergence statistics near
the boundary

We study here the relative stability, near the boundary of the simplex, of the sampling
distributions of a range of Power-Divergence statistics indexed by Amari’s parameter α. Fig.
5 shows histograms for six different values of α, N = 50, k = 200, and exponentially decreasing
values of {πi}, as plotted in Fig. 6. In it, red lines depict kernel density estimates using the
bandwidth suggested in [41].

These sampling distributions differ markedly. The instability for α = 3 expected from
Theorem 1 is clearly visible: very large values contribute to high variance and skewness.
Analogous instability features, albeit at a lower level, remain with the Cressie-Read recom-
mended value α = 7/3. In contrast, as expected from the discussion around Theorem 2, the

12
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distribution of the deviance (α = 1) is stable and roughly normal. Lower values of α retain
these same features.
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4.3 Variation in finite sample adequacy of asymptotic distri-
butions across the parameter space
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Figure 7: Heatmap of the actual level of the test for N = 20 at nominal levels 0.1 and 0.05;
the standard rule-of-thumb, where expected counts are greater than 5, applies only at the
black dot
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Pearson’s χ2 statistic (α = 3) is widely used to test independence in contingency ta-
bles, a standard rule-of-thumb for its validity being that each expected cell frequency should
be at least 5. For illustrative purposes, we consider 2 × 2 contingency tables, the relevant
N -asymptotic null distribution being χ2

1. We assess the adequacy of this asymptotic approx-
imation by comparing nominal and actual significance levels of this test, based on 10,000
replications. Particular interest here lies in how these actual levels vary across different data
generation processes within the same null hypothesis of independence.

Figures 7 and 8 show the actual level of the Pearson χ2 test for nominal levels 0.1 and
0.05 for sample sizes N = 20 and N = 50, πr and πc denoting row and column probabilities
respectively. The above rule-of-thumb applies only at the central black dot in Figure 7, and
inside the closed black curved region in Figure 8. The actual level was computed for all pairs
of values of πr and πc and then averaged using the symmetry of the parameter space and
smoothed using the kernel smoother for irregular 2D data (implemented in the package fields
in R). In each case, the white tone contains the nominal level, while red tones correspond to
liberal and blue tones to conservative actual levels.

The finite sample adequacy of this standard asymptotic test clearly varies across the
parameter space. In particular, its nominal and actual levels agree well at some parameter
values outside the standard rule-of-thumb region; and, conversely, disagree somewhat at other
parameter values inside it. Intriguingly, the agreement between nominal and actual levels does
not improve everywhere with sample size. Overall, the clear patterns evident in this lack of
uniformity invite further theoretical investigation.

5 Discussion

This paper has illustrated the key importance of working with the boundary of the closure
of exponential families when studying goodness-of-fit testing in the high dimensional, low
sample size context. Some of this work is new, Section 2, while some uses the structure of
extended exponential families to add insight to standard results in the literature, Section 3.
The last section, 4, uses simulation studies to start to explore open questions in this area.

One open question, related to the results of Theorems 1 and 2, is to see if a unified theory,
for all values of α, and over large classes of extended exponential families, can be developed.

A APPENDICES

A.1 Appendix: Proof of Theorem 1

We start by noting an important recurrence relation which will be exploited in the compu-
tations below. By definition, for any t := (ti) ∈ Rk+1, n = (ni) has moment generating
function

M(t;N) := E{exp(tTn)} = [m(t)]N

with m(t) =
∑k

i=0ai and ai = ai(ti) = πie
ti . Putting

fN,i(t; r) := N(r) [m(t)]N−r ari (0 ≤ r ≤ N),

15



where

N(r) := NPr =

{
1 if r = 0
N(N − 1)...(N − (r − 1)) if r ∈ {1, ..., N} ,

we have
M(t;N) = fN,i(t; 0) (0 ≤ i ≤ k) (12)

and the recurrence relation:

∂fN,i(t; r)

∂ti
= fN,i(t; r + 1) + rfN,i(t; r) (0 ≤ i ≤ k; 0 ≤ r < N) . (13)

When there is no risk of confusion, we may abbreviate M(t;N) to M and fN,i(t; r) to fN (r),
or even to f(r) – so that (12) becomes M = f(0). Again, we may write ∂rM(t;N)/∂tri
as Mr, ∂

r+sM(t;N)/∂tri∂t
s
j as Mr,s and ∂r+s+uM(t;N)/∂tri∂t

s
j∂t

u
l as Mr,s,u, with similar

conventions for higher order mixed derivatives.
We can now use this to explicitly calculate low order moments of the count vectors. Using

E(nri ) = ∂rM(t;N)/∂tri |t=0, the first N moments of ni now follow from (12) and repeated
use of (13), noting that m(0) = 1 and ai(0) = πi.

In particular, the first 6 moments of each ni can be obtained as follows, where N ≥ 6 is
assumed. Using (12) and (13), we have

M1 = f(1)

M2 = f(2) + f(1)

M3 = f(3) + 2f(2) + f(2) + f(1) = f(3) + 3f(2) + f(1)

M4 = f(4) + 6f(3) + 7f(2) + f(1)

M5 = f(5) + 10f(4) + 25f(3) + 15f(2) + f(1)

M6 = f(6) + 15f(5) + 65f(4) + 90f(3) + 31f(2) + f(1).

Substituting in, we have

E(ni) = Nπi

E(n2i ) = N(2)π
2
i + Nπi

E(n3i ) = N(3)π
3
i + 3N(2)π

2
i + Nπi

E(n4i ) = N(4)π
4
i + 6N(3)π

3
i + 7N(2)π

2
i + Nπi

E(n5i ) = N(5)π
5
i + 10N(4)π

4
i + 25N(3)π

3
i + 15N(2)π

2
i + Nπi

E(n6i ) = N(6)π
6
i + 15N(5)π

5
i + 65N(4)π

4
i + 90N(3)π

3
i + 31N(2)π

2
i +Nπi.

This can be formalised in the following Lemma

Lemma 4. The integer coefficients in any expansion

Mr =

r∑
s=1

cr(s)f(s) (1 ≤ r ≤ N)

can be computed using cr(1) = cr(r) = 1 together, for r ≥ 3, with the update:

cr(s) = cr−1(s− 1) + scr−1(s) (1 < s < r).
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We note that if Mr is required for r > N , we may repeatedly differentiate

MN =

N∑
s=1

cN (s)f(s)

w.r.t. ti, noting that f(N) = N !aNi no longer depends on m(t) so that, for all h > 0,
∂hf(N)/∂thi = Nhf(N).

Mixed moments of any order can be derived from those of lower order, exploiting the fact
that ai depends on t only via ti. We illustrate this by deriving those required for the second
and third moments of W .

First consider the mixed moments required for the second moment of W . Of course,
V ar(W ) = 0 if k = 0. Otherwise, k > 0 and computing V ar(W ) requires E(n2in

2
j ) for i 6= j.

We find this as follows, assuming N ≥ 4.
The relation M2 = f(2) + f(1) established above gives

∂2M/∂t2j = N(2)a
2
jfN−2(0) +NajfN−1(0). (14)

Repeated use of (14) now gives

M2,2 = N(4)a
2
i a

2
jfN−4(0) +N(3)aiaj(ai + aj)fN−3(0) +N(2)aiajfN−2(0) (15)

so that
E(n2in

2
j ) = N(4)π

2
i π

2
j +N(3)πiπj(πi + πj) +N(2)πiπj .

We further look at the mixed moments needed for the third moment of W . For the
skewness of W , we need E(n2in

4
j ) for i 6= j and, when k > 1, E(n2in

2
jn

2
l ) for i, j, l distinct. We

find these similarly, as follows, assuming k > 1 and N ≥ 6.
Equation (15) above gives

∂2M/∂t2j∂t
2
l = N(4)a

2
ja

2
l fN−4(0) +N(3)ajal(aj + al)fN−3(0) +N(2)ajalfN−2(0)

from which, using (14) repeatedly, we have

M2,2,2 = a2ja
2
l {N(6)a

2
i fN−6(0) +N(5)aifN−5(0)}+ ajal(aj + al){N(5)a

2
i fN−5(0) +N(4)aifN−4(0)}+

ajal{N(4)a
2
i fN−4(0) +N(3)aifN−3(0)}

= N(6)a
2
i a

2
ja

2
l fN−6(0) +N(5)aiajal{aiaj + ajal + alai}fN−5(0) +N(4)aiajal{ai + aj + al}fN−4(0)+

N(3)aiajalfN−3(0)

so that E(n2in
2
jn

2
l ) equals

N(6)π
2
i π

2
jπ

2
l +N(5)πiπjπl{πiπj + πjπl + πlπi}+N(4)πiπjπl{πi + πj + πl}+N(3)πiπjπl.

Finally, the relation M4 = f(4) + 6f(3) + 7f(2) + f(1) established above gives

∂4M/∂t4j = N(4)a
4
jfN−4(0) + 6N(3)a

3
jfN−3(0) + 7N(2)a

2
jfN−2(0) + NajfN−1(0)

so that, again using (14) repeatedly, yields

E(n2in
4
j ) = N(6)π

2
i π

4
j +N(5)πiπ

3
j (6πi + πj) +N(4)πiπ

2
j (7πi + 6πj) +N(3)πiπj(πi + 7πj) +N(2)πiπj .

17



Combining above results, we obtain here the first three moments of W . Higher moments
may be found similarly.

We first look at E(W ). We have W = 1
N2

k∑
i=0

n2
i
πi
− 1 and E(n2i ) = N(2)π

2
i +Nπi, so that

E(W ) =
N(2)

N2
+

(k + 1)

N
− 1 =

k

N
.

The variance is computed by recalling that N2(W + 1) =
∑

i
n2
i
πi

, while E(W ) = k
N ,

V ar(W ) = V ar(W + 1) =
A(2)

N4
−
(
k

N
+ 1

)2

,

where

A(2) := N4E{(W + 1)2} =
∑

i

E(n4i )

π2i
+
∑∑

i 6=j

E(n2in
2
j )

πiπj
.

Using expressions for E(n4i ) and E(n2in
2
j ) established above, and putting

π(α) :=
∑

i
παi ,

we have ∑
i

E(n4i )

π2i
=
∑

i
{N(4)π

2
i + 6N(3)πi + 7N(2) +Nπ−1i }

= N(4)π
(2) + 6N(3) + 7N(2)(k + 1) +Nπ(−1)

and ∑∑
i 6=j

E(n2in
2
j )

πiπj
=
∑

i 6=j
{N(4)πiπj +N(3)(πi + πj) +N(2)}

= N(4)(1− π(2)) + 2N(3)k +N(2)k(k + 1),

so that
A(2) = N(4) + 2N(3)(k + 3) +N(2)(k + 1)(k + 7) +Nπ(−1),

whence

V ar(W ) =
N(4) + 2N(3)(k + 3) +N(2)(k + 1)(k + 7) +Nπ(−1)

N4
−
(

1 +
k

N

)2

=

{
π(−1) − (k + 1)2

}
+ 2k(N − 1)

N3
, after some simplification.

Note that V ar(W ) depends on (πi) only via π(−1) while, by strict convexity of x →
1/x (x > 0),

π(−1) ≥ (k + 1)2, equality holding iff πi
i≡ 1/(k + 1).

Thus, for given k and N , V ar(W ) is strictly increasing as (πi) departs from uniformity,
tending to ∞ as one or more πi → 0+.
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Finally, for these calculations, we look at E[{W − E(W )}3]. Recalling again that N2(W+

1) =
∑

i
n2
i
πi

,

E[{W − E(W )}3] = E[{(W + 1)− E(W + 1)}3]
= N−6A(3) − 3V ar(W )(E(W ) + 1)− (E(W ) + 1)3,

where A(3) := N6E{(W + 1)3} is given by

A(3) =
∑

i

E(n6i )

π3i
+ 3

∑∑
i 6=j

E(n2in
4
j )

πiπ2j
+
∑∑∑

i,j,l distinct

E(n2in
2
jn

2
l )

πiπjπl
.

Given that

E(W ) = k/N and V ar(W ) =

{
π(−1) − (k + 1)2

}
+ 2k(N − 1)

N3
,

it suffices to find A(3).
Using expressions for E(n6i ), E(n2in

2
jn

2
l ) and E(n2in

4
j ) established above, we have∑

i

E(n6i )

π3i
= N(6)π

(3) + 15N(5)π
(2) + 65N(4) + 90N(3)(k + 1) + 31N(2)π

(−1) +Nπ(−2)

∑∑
i 6=j

E(n2in
4
j )

πiπ2j
= N(6)πiπ

2
j +N(5)πj(6πi + πj) +N(4)(7πi + 6πj) +N(3)(πi/πj + 7) +N(2)π

−1
j

= N(6){π(2) − π(3)}+N(5){6 + (k − 6)π(2)}+

13N(4)k +N(3){π(−1) + (7k − 1)(k + 1)}+N(2)kπ
(−1)

and∑∑∑
i,j,l distinct

E(n2in
2
jn

2
l )

πiπjπl
= N(6){1 + 2π(3) − 3π(2)}+ 3N(5)(k − 1){1− π(2)}+

3N(4)k(k − 1) +N(3)k(k2 − 1)

so that, after some simplification,

A(3) = N(6) + 3N(5)(k + 5) +N(4){3k(k + 12) + 65}+

N(3){k3 + 21k2 + 107k + 87}+ 3N(3)π
(−1) +N(2)(31 + 3k)π(−1) +Nπ(−2).

Substituting in and simplifying, we find E[{W − E(W )}3] to be:{
π(−2) − (k + 1)3

}
− (3k + 25− 22N)

{
π(−1) − (k + 1)2

}
+ g(k,N)

N5
,

where
g(k,N) = 4(N − 1)k(k + 2N − 5) > 0.

Note that E[{W − E(W )}3] depends on (πi) only via π(−1) and the larger quantity π(−2).
In particular, for given k and N , the skewness of W tends to +∞ as one or more πi → 0+.
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A.2 Appendix: Truncate and bound approximations

In the notation of Lemma 3, it suffices to find truncate and bound approximations for each
of E(Xµ), E(X.Xµ) and E(X2

µ).
For all r, s in N , define hr,s(µ) := E{(log(X + r))s}. Appropriate choices of m ∈ N0 and

a ∈ A in (9), together with (10), give:

E(Xµ) = µh1,1(µ)− µ logµ,

E(X.Xµ) = {µ2h2,1(µ) + µh1,1(µ)} − (µ2 + µ) logµ, and:

E(X2
µ) = µ2h2,2(µ) + µh1,2(µ) + (µ2 + µ)(logµ)2 − 2 logµ{µ2h2,1(µ) + µh1,1(µ)},

so that it suffices to truncate and bound hr,s(µ) for r, s ∈ {1, 2}.
For all r, s in N , and for all m ∈ N0, we write:

hr,s(µ) = h[m]
r,s (µ) + ε[m]

r,s (µ)

in which:

h[m]
r,s (µ) :=

∑m
x=0{(log(x+ r))s}p(x) and ε[m]

r,s (µ) :=
∑∞

x=m+1{(log(x+ r))s}p(x).

Using again (7), the ‘error term’ ε
[m]
r,s (µ) has lower and upper bounds:

0 < ε[m]
r,s (µ) < ε[m]

r,s (µ) :=
∑∞

x=m+1(x+ (r − 1))sp(x).

Restricting attention now to r, s ∈ {1, 2}, as we may, and requiring m ≥ s so that F [m−s](µ)
given by (4) is defined, (8) gives:

ε
[m]
1,1 (µ) =

∑∞
x=m+1xp(x) = µ

∑∞
x=mp(x) = µ{1− F [m−1](µ)},

ε
[m]
2,1 (µ) =

∑∞
x=m+1(x+ 1)p(x) = ε

[m]
1,1 (µ) + {1− F [m](µ)},

ε
[m]
1,2 (µ) =

∑∞
x=m+1x

2p(x) =
∑∞

x=m+1{x(x− 1) + x}p(x)

= µ2{1− F [m−2](µ)}+ ε
[m]
1,1 (µ)

and:

ε
[m]
2,2 (µ) =

∑∞
x=m+1(x+ 1)2p(x) =

∑∞
x=m+1{x

2 + (x+ 1) + x}p(x)

= ε
[m]
1,2 (µ) + ε

[m]
2,1 (µ) + ε

[m]
1,1 (µ).

Accordingly, for given µ, each ε
[m]
r,s (µ) decreases strictly to zero with m providing, to any de-

sired accuracy, truncate and bound approximations for each of ν, τ and ρ. In this connection,
we note that the upper tail probabilities involved here can be bounded by standard Chernoff
arguments.
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