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Abstract

In this article, we develop a sum and share decomposition to model multivariate dis-

crete distributions, and more specifically multivariate count data that can be divided

into a number of distinct categories. From a Poisson mixture model for the sum and

a multinomial mixture model for the shares, a rich ensemble of properties, examples

and relationships arises. As a main example, a seemingly new multivariate model in-

volving a negative binomial sum and Pólya shares is considered, previously seen only

in the bivariate case. For other choices of the distribution of the sum, natural but

novel discrete multivariate Liouville distributions emerge; an important special case

of these is that of Schur constant distributions. A new variance-mean inequality for

univariate discrete distributions with decreasing probability mass functions ensues.

Analogies and interactions with related continuous multivariate distributions are to

the fore throughout.

Keywords: Liouville distribution; Multinomial mixture; Poisson mixture; Pólya dis-
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1. Introduction

This article is concerned with hierarchical constructions for multivariate count data,

thinking of total counts as sums and their separation into distinct categories as shares

of those sums. Such representations are plentiful in practice, consisting, for instance,

of events (accidents, insurance claims, occurrences of diseases, presence of a member

of a species, etc.) falling into different geographical locations, types, time periods,

etc.

Formally, let N0 denote the set of non-negative integers and d denote dimensionality.

We are concerned with joint distributions for random variables M1, ...,Md ∈ N
d
0. For

convenience, write Mq = (M1, ...,Mq), q = d − 1 or d. Our starting point is to

transform linearly from Md to (Md−1, T ) where T = M1 + · · · + Md is the sum

of the random variables. Then, this article is concerned with the construction of

multivariate discrete distributions in the following manner:

• let the sum T have a distribution with probability mass function (p.m.f.) pT (t),

t ∈ N0;

• conditionally on T = t, share t out between values for Md, that is, let

Md−1|T = t have a distribution with p.m.f. b[t](m1, ..., md−1) on the discrete sim-

plex defined by Md−1 ∈ {0, 1, ..., t}d−1 such that M1 + · · ·+Md−1 ∈ {0, 1, ..., t}.

Of course, we have just rewritten the joint p.m.f., p(m1, ..., md), of any Md ∈ N
d
0 in

the equivalent form

p(m1, ..., md) = b[m1+···+md](m1, ..., md−1) pT (m1 + · · · +md), (1)

rather than making any reduction in generality.

Our aim in this article is to investigate certain families of multivariate discrete dis-

tributions which are especially natural and/or attractive to define through this ‘sum

and share’ construction. Let us cut straight to the chase. Since T is a count random

variable, the Poisson distribution is a natural first choice for pT ; for a first choice of

distribution with p.m.f. b[t](m1, ..., md−1) on the unit simplex, the multinomial distri-

bution springs to mind. It is easy to see that the resulting joint distribution is that

of d independent Poisson random variables with parameters ri ≡ λui, i = 1, ..., d,

where λ is the parameter of the Poisson distribution and u1, ..., ud are the parame-

ters of the multinomial distribution. For greater generality and to induce correlation,

we consider instead mixing these distributions over distributions for Λ > 0 and for

0 < U1, ..., Ud < 1 such that U1 + · · · + Ud = 1. The resulting joint distributions are

considered in general terms in Section 2.

We then specialise again by making the natural choices of Λ following a gamma

distribution (so that T is negative binomial) and of U1, ..., Ud following a Dirichlet
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distribution (so that Md−1|T = t follows a Dirichlet-multinomial, or multivariate

Pólya, distribution). The resulting joint distribution is a multivariate extension of

what in the bivariate case Laurent (2012) called the Bailey distribution. It is a focus

of this article, and is considered in detail in Section 3. Its two main special cases

are included in Section 3.1. Likelihood inference is straightforward for sum-and-share

models when the sum and share distributions have no parameters in common; this is

the case for the distribution of Section 3, as described in Section 3.2.

In Section 4, we look rather briefly at a different ‘super case’ of the distribution of

Section 3, what we call the multivariate discrete Liouville distribution. Prominent

among this class of distributions are the Schur constant distributions of Castañer et

al. (2015), discussed in Section 4.1. We finish the article in Section 5 with further

brief discussion.

2. Poisson Mixtures for Sums and Multinomial Mixtures for Shares

Let us first consider taking b[t](m1, ..., md−1) to be the p.m.f. of a multinomial mixture

distribution:

Md−1|T = t, U1 = u1, ..., Ud−1 = ud−1 ∼ Multinomial(t, u1, ..., ud−1)

where

U1, ..., Ud−1 ∼ H on 0 < u1 + · · · + ud−1 < 1, independent of T ;

and to take pT (t) to be the p.m.f. of a Poisson mixture distribution:

T |Λ = λ ∼ Poisson(λ) , Λ ∼ L on (0,∞), independent of U1, ..., Ud−1.

In this case, (1) becomes for absolutely continuous densities h for (U1, . . . , Ud−1) and

ℓ for Λ,

p(m1, . . . , md) =

∫

0<u1+···+ud−1<1

· · ·

∫

(m1 + · · ·+md)!

m1! · · ·md!
um1

1 · · ·u
md−1

d−1 (1 − u1 − · · · − ud−1)
md

×h(u1, ..., ud−1)du1 · · · dud−1 (2)

×

∫

∞

0

e−λλm1+···+md

(m1 + · · · +md)!
ℓ(λ)dλ, m1, ..., md ∈ N

d
0.

Alternatively, one can think of (2) as the result of mixing independent Poisson dis-

tributions with parameters ri = λui, i = 1, ..., d, over the distribution of Ri = ΛUi,

i = 1, ..., d, where (R1, ..., Rd) follow the continuous analogue of (1) in which Λ =

R1 + · · · +Rd plays the role of T and (R1, ..., Rd−1) plays the role of Md−1:

f(r1, ..., rd) =
1

(r1 + · · · + rd)d−1
h

(

r1
r1 + · · ·+ rd

, · · · ,
rd−1

r1 + · · ·+ rd

)

ℓ(r1 + · · · + rd),

(3)
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r1, ..., rd > 0.

Marginal distributions for Mi, i = 1, ..., d, are Poisson mixture distributions but the

marginal distributions of Ri, i = 1, ..., d, and hence ofMi, i = 1, ..., d, are not tractable

in general. The moments of Mi, i = 1, ..., d, are readily available in terms of those of

Λ and Ui, i = 1, ..., d, however. In particular, E(Mi) = E(Λ)E(Ui) and

V (Mi) = E(Λ2)V (Ui) + V (Λ){E(Ui)}
2 + E(Λ)E(Ui).

Recall that Poisson mixture distributions are necessarily overdispersed, as is reflected

in these formulae. Covariances simplify because Cov(Mi,Mj|R1, ..., Rd) = 0 for any

i 6= j so that

Cov(Mi,Mj) = Cov(Ri, Rj).

Therefore, for 1 ≤ (i 6= j) ≤ d,

Cov(Mi,Mj) = V (Λ)E(UiUj) + {E(Λ)}2Cov(Ui, Uj).

In particular, for the bivariate version of (2),

Cov(M1,M2) = V (Λ)E{U(1 − U)} − {E(Λ)}2V (U)

where U ≡ U1 ∼ H on (0, 1). Clearly, this covariance is always negative for degen-

erate Λ (i.e. T is Poisson distributed) and non-degenerate U . On the other hand,

the covariance is always positive for degenerate U (i.e. M1 = 1 −M2 is binomially

distributed) and non-degenerate Λ.

3. Negative Binomial Sums and Pólya Shares

The most natural mixing distributions to employ for U and Λ would seem to be

U ∼ Dirichlet(α1, ..., αd), Λ ∼ Gamma(a, b),

α1, ..., αd, a, b > 0; write α• = α1 + · · ·+αd > 0 and 0 < θ = b/(1+ b) < 1. This gives

a (d+ 2)-parameter family whose p.m.f. is readily seen to be

p(m1, ..., md) =
(a)m1+···+md

m1! · · ·md!

∏d

i=1(αi)mi

(α•)m1+···+md

θa(1 − θ)m1+···+md , (4)

m1, ..., md ∈ N
d
0. Here, (α)m denotes the ascending factorial Γ(α + m)/Γ(α). By

construction, we have

Md−1|T = t ∼ Pólya(t;α1, ..., αd) and T ∼ NegativeBinomial (a, θ) .

When d = 2, this is the Bailey distribution of Laurent (2012) and the distribution in

(4) thus represents its multivariate extension.
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The (R1, ..., Rd) distribution associated with the distribution with p.m.f. (4) has den-

sity

f(r1, ..., rd) =
baΓ(α•)

Γ(a)
∏d

i=1 Γ(αi)

(

d
∏

i=1

rαi−1
i

)

(r1 + · · ·+ rd)
a−α• e−b(r1+···+rd), (5)

r1, ..., rd > 0. Of course, R1, ..., Rd|Λ = λ ∼ λ × Dirichlet(α1, ..., αd) and Λ

= R1 + · · · + Rd ∼ Gamma(a, b). This ‘Dirichlet-gamma’ distribution has been used

in low-dimensional cases as a prior distribution in Bayesian analysis, in the guise of

a ‘beta-gamma’ distribution by e.g. Bhattacharya et al. (2014) when d = 2 and by

Peña & Gupta (1990) when d = 3. It is a particular continuous multivariate Liouville

distribution (Gupta & Richards, 1987).

Moments are readily available. Inserting the moments of the gamma and Dirichlet

distributions into the formulae in Section 2, we find that, for i = 1, ..., d,

E(Mi) =
aαi

b α•

,

V (Mi) =
aαi

b2 α2
•
(1 + α•)

[α•{a+ 1 + (1 + α•)b} + (α• − a)αi]

and, for 1 ≤ (i 6= j) ≤ d,

Cov(Mi,Mj) =
a(α• − a)αiαj

b2 α2
•
(1 + α•)

. (6)

The signs of the covariances are the same for all i, j and depend directly on the sign of

α•−a. Covariances are zero when α• = a which corresponds to independence: (5) re-

duces to the distribution of independent Gamma(αi, b) random variables, i = 1, ..., d,

and hence (4) to the distribution of independent NegativeBinomial(αi, θ) random

variables, i = 1, ..., d.

In fact, independence holds in (4) (equivalently in (5)) if and only if α• = a. This

can be seen directly from the density functions or from the product moments. For

general product moments, let K = k1 + · · ·+ kd. Then, we have

E

(

d
∏

i=1

Rki

i

)

= E
(

ΛK
)

E

(

d
∏

i=1

Uki

i

)

=
(a)K

∏d

i=1(αi)ki

bK(α•)K

= E

{

d
∏

i=1

(Mi − ki + 1)ki

}

.

The final equality holds because the kth descending factorial moment of the Poisson

distribution with parameter λ is λk. Inter alia, this gives a formula for marginal

binomial moments:

E

{(

Mi

ki

)}

=
(a)ki

(αi)ki

ki! bki (α•)ki

, i = 1, ..., d.
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Marginal distributions are a little more tractable than they were in the more general

case of Section 2. In Appendix A, we show that the p.m.f. of M1 can be written

P(Mi = mi) =
ba

(1 + b)a+mi

(a)mi
(αi)mi

(α•)mi
mi!

2F1

(

a+mi, α• − αi;α• +mi;
1

1 + b

)

.

Here, 2F1 is the Gauss hypergeometric function. A closely related expression was

given when d = 2 in Laurent (2012).

For a pair of random variables, alongside the covariance and correlation, it is also of

interest to consider local dependence which, in the case of discrete models, is measured

by the set of log cross-product ratios of adjacent 2 × 2 cells in a (usually infinitely)

large ordinal contingency table (Yule & Kendall, 1950, Goodman, 1969, 1985): for

(m1, m2) ∈ N
2
0, define

θ(m1, m2) ≡ log

{

p(m1, m2)p(m1 + 1, m2 + 1)

p(m1 + 1, m2)p(m1, m2 + 1)

}

.

When d = 2, (4) becomes

p(m1, m2) =
(α1)m1

(α2)m2

m1!m2!

(a)m1+m2

(α1 + α2)m1+m2

θa (1 − θ)m1+m2

and hence the distribution has local dependence function

θ(m1, m2) = log

{

(α1 + α2 +m1 +m2)(a+m1 +m2 + 1)

(α1 + α2 +m1 +m2 + 1)(a+m1 +m2)

}

.

This is a function only of t = m1+m2, α• = α1+α2 and a; for fixed t, it is increasing in

α• and decreasing in a. It is necessarily zero for all t if and only if α• = a, previously

established to be the case of independence. The local dependence function is positive

(negative) for all t when α0 > (<) a (like the correlation). It is largest in absolute

value when t = 0 where it takes the value log[α•(a + 1)/{a(α• + 1)}] and tends to

zero as t→ ∞.

3.1 Special Cases

1: α1 = · · · = αd = 1. The Dirichlet mixing distribution reduces to the continuous

uniform distribution on the simplex and so the Dirichlet-multinomial distribution

reduces to the discrete uniform distribution on the discrete simplex. We then have the

‘discrete Schur-constant’ distribution of Castañer et al. (2015) with negative binomial

T , which has

p(m1, ..., md) =
(a)m1+···+md

(d)m1+···+md

θa (1 − θ)m1+···+md , (7)
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m1, ..., md ∈ N
d
0. Notice that (7) depends on m1, ..., md only through the sum m1 +

· · · +md. Similarly, the underlying distribution of (R1, ..., Rd) has density

f(r1, ..., rd) =
baΓ(d)

Γ(a)
(r1 + · · · + rd)

a−d e−b(r1+···+rd), (8)

r1, ..., rd > 0, which depends on r1, ..., rd only through r1+· · ·+rd. Immediately, if a =

d, (7) reduces to the distribution of d independent geometric(θ) random variables and

(8) to the distribution of d independent exponential(b) random variables, respectively.

Distribution (8) underlies the ‘gamma-simplex copula’ of McNeil & Nešlehová (2010)

in a sense to be explained in a more general discussion of distributions with uniform

shares in Section 4.1 to follow.

2: α1, ..., αd → ∞ such that αi/(α1+ · · ·+αd) → φi, i = 1, ..., d. The Dirichlet mixing

distribution becomes degenerate at values 0 < φ1, ..., φd < 1 such that
∑d

i=1 φi = 1,

so the Dirichlet-multinomial distribution reduces to the multinomial distribution and

we have

p(m1, ..., md) =
(a)m1+···+md

m1! · · ·md!

(

d
∏

i=1

φmi

i

)

θa(1 − θ)m1+···+md , (9)

m1, ..., md ∈ N
d
0. In this case, it is not difficult to show that, for 1 ≤ (i 6= j) ≤ d,

Corr(Mi,Mj) =

√

φi

φi + b

φj

φj + b
> 0

(where b = θ/(1 − θ)). The amount of correlation varies monotonically from 0 to 1

as b decreases from ∞ to 0, or equivalently as θ decreases from 1 to 0. When d = 2,

p(m1, m2) =
(a)m1+m2

m1!m2!
θaqm1

1 qm2

2 , m1, m2 ∈ N
2
0,

where q1 = φ1(1 − θ), q2 = (1 − φ1)(1 − θ). This has marginals that are Negative-

Binomial(a, θ/(θ + qi)), i = 1, 2, and local dependence function

θ(m1, m2) = log(a+m1 +m1 + 1) − log(a +m1 +m2) > 0.

The latter depends only on a rather than on b and φ1.

3.2 Likelihood Inference

Let (m1j , ..., mdj), j = 1, ..., n, be a sample of independent observations taken from the

distribution with density (4); also let tj = m1j + · · ·+mdj , j = 1, ..., n, be the sample

totals. Likelihood inference for the parameters a, θ associated with the distribution of
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Λ and for the parameters α1, ..., αd associated with the distribution of U proceeds as

two separate problems. The (d+2)×(d+2) Fisher information matrix associated with

distribution (4) will therefore be in two blocks, one of size 2× 2, the other d× d, and

maximum likelihood (ML) estimators of a and θ will be asymptotically independent

of ML estimators of α1, ..., αd.

The problem of estimating a and θ is the standard one of ML estimation of the

parameters of the negative binomial distribution when both are unknown; for early

references, see Section 5.8.3 of Johnson et al. (2005). The cross-term in the 2×2 Fisher

information submatrix is −1/θ, meaning that the asymptotic correlation between the

ML estimates of a and θ is positive.

The problem of estimating α1, ..., αd is one of ML estimation of the parameters of the

Pólya distribution based on independent data with different, known, values of t. The

score equations reduce to

n
∑

j=1

{ψ(αi +mij) − ψ(αi)} =
n
∑

j=1

{ψ(α• + tj) − ψ(α•)}, i = 1, ..., d,

where ψ is the digamma function (which is an increasing function for positive values

of its argument). The d× d submatrix of the observed information matrix has all its

off-diagonal elements the same and equal to

n
∑

j=1

{ψ′(α• + tj) − ψ′(α•)} < 0.

It follows that the corresponding block of the asymptotic correlation matrix is of

equicorrelation type, the correlations between ML estimates of α’s being positive.

4. Super Case: the Multivariate Discrete Liouville Distribution

Super cases of the distribution on which we focussed in Sections 3 and 4 abound, of

course, by making different choices of distributions for T and Md−1|T = t in (1).

A super case of particular interest might be that in which the sharing distribution

remains the Dirichlet-multinomial as in Section 3 but a general distribution is allowed

for T (rather than the negative binomial). This results in

p(m1, ..., md) =
(m1 + · · ·+md)!

m1! · · ·md!

∏d

i=1(αi)mi

(α•)m1+···+md

pT (m1 + · · ·+md). (10)

Note that (10) can be written as

p(m1, ..., md) =

∏d

i=1(αi)mi

m1! · · ·md!
F(m1 + · · · +md). (11)
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where F(t) = t!pT (t)/(α•)t. The form of (11) is a discrete analogue of the continuous

multivariate Liouville distribution (Gupta & Richards, 1987) which has p.d.f.

f(r1, ..., rd) =

(

d
∏

i=1

rαi−1
i

)

F(r1 + · · · + rd), (12)

ri > 0, i = 1, ..., d, for suitable F. More strikingly, perhaps, if T has a Poisson

mixture distribution with general (not necessarily gamma) mixing density ℓ, then

the distribution of (R1, ..., Rd) associated with (10) — the special case of (3) with

Dirichlet h — has the form

f(r1, ..., rd) =
Γ(α•)

∏d

i=1 Γ(αi)

∏d

i=1 r
αi−1
i

(r1 + · · · + rd)α•−1
ℓ(r1 + · · ·+ rd)

which is indeed a continuous Liouville distribution of form (12). In the discrete case,

our preferred formulation is (10) rather than (11) because the role of pT in the former

is much clearer than that of F in the latter.

In the literature, the name multivariate discrete Liouville distribution was used by

Lingappaiah (1984) for the distribution having p.m.f. of form

p(m1, ..., md) =

∏d

i=1 θ
mi

i

m1! · · ·md!
G(m1 + · · ·+md).

Rearranging appropriately, this can be written

p(m1, ..., md) =
(m1 + · · · +md)!

m1! · · ·md!

{

d
∏

i=1

(

θi

θ1 + · · ·+ θd

)mi

}

pT (m1 + · · ·+md). (13)

This is none other than distribution (1) with general distribution for T and

multinomial, Multinomial(t, θ1/
∑d

i=1 θi, ..., θd−1/
∑d

i=1 θi), conditional distribution for

Md−1|T = t. It follows that the new multivariate discrete Liouville distribution at

(10) is a mixture over Θ1/
∑d

j=1 Θj, ...,Θd−1/
∑d

j=1 Θj ∼ Dir(α1, ..., αd) of Lingappa-

iah’s multivariate discrete Liouville distribution at (13) (and hence is more general

than it).

4.1 Special Case: Schur Constant Distributions

The special cases of our multivariate discrete Liouville distribution (10) with α1 =

· · · = αd = 1 are the Schur constant distributions of Castañer et al. (2015). (A special

case of this observation was made in Section 3.1 above.) This multivariate discrete

distribution is of considerable independent interest. As well as listing a few of the

particular properties of this distribution, we would like to stress its analogue with the
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continuous case. All but two of the observations in this subsection can also be found

in Castañer et al. (2015); the two new observations are both in the fourth paragraph

of this subsection. Castañer et al. (2015) provide various applications in insurance

for a related counting process.

From (10), the p.m.f. in this case has the simple form

p(m1, ..., md) = pT (m1 + · · · +md) /

(

m1 + · · ·+md + d− 1

d− 1

)

;

this reduces in the bivariate case (for which, see also Ait Aoudia & Marchand,

2014) to p(m1, m2) = pT (m1 +m2)/(m1 +m2). Notice that the p.m.f. is constant on

m1 + · · ·+md = k for each constant value of k = 0, 1, ..., hence the name given to the

distribution. This is a consequence of the sharing distribution being uniform on the

discrete simplex.

For Schur constant distributions, univariate marginal distributions are all the same

and can be written in terms of pT as

pS(mi) = (d− 1)
∞
∑

t=mi

(t−mi + 1)d−2

(t+ 1)d−1

pT (t) (14)

(multivariate marginals can be written in rather similar fashion); conversely,

pT (t) =

(

t+ d− 1

d− 1

) d−1
∑

j=0

(

d− 1

j

)

(−1)jp(t+ j). (15)

In fact, the joint p.m.f. can be written in terms of pS as

p(m1, ..., md) =
d−1
∑

j=0

(

d− 1

j

)

(−1)jpS(m1 + · · ·+md + j) (16)

and the survival function simply as

Pr(M1 ≥ m1, ...,Md ≥ md) = P S(m1 + · · ·+md) (17)

where P S is the survival function associated with pS. While pT can be specified ar-

bitrarily on N0, (15) and (16) show that pS has to be a discrete (d − 1)-monotone

distribution on N0 (Chee & Wang, 2016). Independence in Schur constant distribu-

tions corresponds to pS being geometric. An interesting example of (16) occurs for pS

a Poisson(α) p.m.f., where 0 < α ≤ 1. Such an example, as well as Dirichlet Poisson

mixtures, arises as the distribution of counts of Bernoulli success strings in recent

work of Ait Aoudia et al. (2016).
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The most convenient form for multivariate moments of Schur constant distributions

— which appears not to be in Castañer et al. (2015) — is

E

{

d
∏

i=1

(

Mi

ki

)

}

= E

{(

T

k1 + · · ·+ kd

)}

/

(

k1 + · · ·+ kd + d− 1

d− 1

)

where T ∼ pT . See Appendix B for a proof of this result. Inter alia, for any 1 ≤ i 6=

j ≤ d,

Cov(Mi,Mj) =
1

d2(d+ 1)

[

dV (T ) − {E(T )}2 − dE(T )
]

=
1

2

[

V (Mi) − {E(Mi)}
2 −E(Mi)

]

.

It follows that Corr(Mi,Mj) < 1/2. Pairs of random variables are positively correlated

if

V (T ) > E(T )

{

E(T )

d
+ 1

}

,

a requirement becoming closer and closer to overdispersion of the distribution of T

as d increases. Also, Corr(Mi,Mj) ≥ −1 implies that, for Mi following a distribution

on N0 with decreasing p.m.f.,

V (Mi) ≥
1

3
E(Mi){E(Mi) + 1}.

This apparently new observation is the discrete analogue of the result V (X) ≥
1
3
{E(X)}2 for X following a unimodal continuous distribution with mode at 0 given

by Johnson & Rogers (1951). In particular, a univariate distribution with decreasing

p.m.f. on N0 is guaranteed to be overdispersed if its mean is greater than 2.

Schur constant discrete distributions are direct analogues of the continuous distribu-

tions underlying Archimedean copulas (e.g. Nelsen, 2006). Those distributions also

have survival functions of the form (17) which, along with their densities, are constant

on planes of the form r1 + · · ·+rd = k > 0 and have equal continous (d−1)-monotone

marginal distributions on R
+, the analogue of relationship (14) being the so-called

Williamson transform (see especially McNeil & Nešlehová, 2009). Independence cor-

responds to exponential marginals.

4.2 Special Case: The Multivariate Generalized Waring Distribution

The multivariate generalized Waring distribution (Xekalaki, 1984, 1986) is the multi-

variate discrete Liouville distribution of this section with general Dirichlet-multinomial

sharing distribution and beta-negative binomial (or generalized Waring) distribution
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for the sum T . We will say no more about this distribution here partly because the

distribution is well known and partly because it is a case where the distributions of

T and Md−1|T = t have a parameter in common (one of the parameters of the beta

mixing distribution is α1 + · · · + αd) so that there is not the inferentially desirable

separation between sum and share parameters in this case.

5. Concluding Remarks

The findings of this article expand on a sum and share decomposition to model

d−variate discrete distributions and more specifically multivariate count data that

fall into d distinct categories. From a simple Poisson mixture model for the total T

with mixing density ℓ and a sharing distribution mechanism T = M1 + · · ·+Md with

M1, . . . ,Md−1|T, U1, . . . , Ud−1 multinomially distributed with U1, . . . , Ud−1 ∼ h, a rich

ensemble of properties, examples and relationships arises. As a main example, in

further studying the case of a negative binomial sum and Pólya shares, we obtained

a seemingly new model as the joint distribution of (M1, . . . ,Md), previously arising

in the bivariate case as a Bayesian predictive distribution (Laurent, 2012).

We have addressed the equivalent scheme for generating the distributions above con-

sisting in decomposing λ =
∑

iRi with Ri = λUi and the Ui as above. This yields

Mi|R1, . . . Rd, i = 1, ..., d, as independently distributed Poisson(Ri). Thus, as is well

illustrated by the identity Cov(Mi,Mj) = Cov(Ri, Rj) (Section 2), the dependence

structure of the discrete Mi’s is induced by that of the continuously distributed Ri’s,

and vice versa.

Finally, for other choices of the distribution of T , continuous multivariate Liouville

distributions emerge for the distribution of the Ri’s, as well as discrete analogues

for the distribution of the Mi’s. Moreover, the latter include the important special

case of Schur constant distributions (Castaner et al. 2015) which are expanded upon

in Section 4.1. Consideration of the correlations in such distributions led us to a

variance-mean inequality for univariate discrete distributions with decreasing proba-

bility mass functions (the distributions’ univariate marginals).

In summary, we feel that our findings provide considerable insight and appealing

analytics for generating and understanding multivariate discrete distributions via sum

and share decompositions.

Appendix A: Marginal P.M.F. Associated with (4)

One can recover the marginal p.m.f.’s through their relationship with the binomial

moments:

P(Mi = mi) =

∞
∑

j=mi

(−1)j−mi

(

j

mi

)

E

(

Mi

j

)

.
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This gives

P(Mi = mi) =
∞
∑

j=mi

(−1)j−mi

(

j

mi

)

(a)j (αi)j

(α•)j j! bj

=
1

mi! bmi

∞
∑

k=0

(a+mi)k (αi +mi)k

(α• +mi)k k!

(

−
1

b

)k

=
(a)mi

(αi)mi

(α•)mi
mi! bmi

2F1

(

a+mi, αi +mi;α• +mi;−
1

b

)

=
ba

(1 + b)a+mi

(a)mi
(αi)mi

(α•)mi
mi! bmi

2F1

(

a+mi, α• − αi;α• +mi;
1

1 + b

)

,

using a standard transformation formula for the hypergeometric function.

Appendix B: Product Binomial Moments for Schur Constant Distributions

E

{

d
∏

i=1

(

Mi

ki

)

}

=

∞
∑

m1=k1

· · ·

∞
∑

md=kd

(

m1

k1

)

· · ·

(

md

kd

)

pT (m1 + · · ·+md)
(

m1+···+md+d−1
d−1

)

=
∞
∑

m1=k1

· · ·
∞
∑

md−1=kd−1

(

m1

k1

)

· · ·

(

md−1

kd−1

)

×

∞
∑

t=m1+···+md−1+kd

(

t−m1 − · · · −md−1

kd

)

pT (t)
(

t+d−1
d−1

) .

Using, for example, (3.3) of Gould (1972), it is the case that

t−m2−···−md−1−kd
∑

m1=k1

(

m1

k1

)(

t−m2 − · · · −md−1 −m1

kd

)

=

(

t−m2 − · · · −md−1 + 1

k1 + kd + 1

)

,

t−mi+1−···−md−1−k1−···−ki−1−kd
∑

mi=ki

(

mi

ki

)(

t−mi − · · · −md−1 + i− 1

k1 + · · ·+ ki−1 + kd + i− 1

)

=

(

t−mi+1 − · · · −md−1 + i

k1 + · · ·+ ki + kd + i

)

, 2 ≤ i ≤ d− 2,

and

t−k1−···−kd−2−kd
∑

md−1=kd−1

(

md−1

kd−1

)(

t−md−1 + d− 2

k1 + · · · + kd−2 + kd + d− 2

)

=

(

t+ d− 1

k1 + · · · + kd + d− 1

)

.
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It then follows that

E

{

d
∏

i=1

(

Mi

ki

)

}

=
∞
∑

t=k1+···+kd

(

t+ d− 1

k1 + · · · + kd + d− 1

)

pT (t)
(

t+d−1
d−1

)

=
1

(

k1+···+kd+d−1
d−1

)

∞
∑

t=k1+···+kd

(

t

k1 + · · · + kd

)

pT (t)

as required.
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