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abstract

Orthogonal and partly orthogonal reparametrisations are provided for certain
wide and important families of univariate continuous distributions. First, the
orthogonality of parameters in location-scale symmetric families is extended
to symmetric distributions involving a third parameter. This sets the scene
for consideration of the four-parameter situation in which skewness is also
allowed. It turns out that one specific approach to generating such four-
parameter families, that of two-piece distributions with a certain parametri-
sation restriction, has some attractive features with regard to parameter
orthogonality. This work also affords partly orthogonal parametrisations of
three-parameter two-piece models.

Keywords: Extended location-scale model; Skew-t distribution; Two-piece
distribution.

1. Introduction

In this paper, we consider theoretical aspects of maximum likelihood (ML)
estimation of the parameters of families of univariate continuous distribu-
tions on the whole of R based on an i.i.d. sample X1, ..., Xn taken from the
model in question. Parameter orthogonality, which implies asymptotic in-
dependence between the parameter estimates concerned, occurs naturally in
(two-parameter) symmetric location-scale models of the form

1

σ
f

(
x− µ

σ

)
; (1.1)
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here and throughout the paper, f is symmetric about zero and µ ∈ R and
σ > 0 are location and scale parameters, respectively. However, parameter
orthogonality seems to be at least partially lost in distributions with addi-
tional shape parameters. We will show how parameter orthogonality can
be reclaimed — at least in principle — for all (three-parameter) symmetric
distributions with an additional shape parameter. We will then investigate
a particular type of (four-parameter) asymmetric extension for which most,
but not all, off-diagonal elements of the expected information matrix can be
made to be zero. The latter also covers certain three-parameter asymmetric
distributions.

We will first consider (in Section 2) a family of symmetric distributions
indexed by three parameters, location µ, scale σ and a third parameter δ > 0
which, in some appropriate way, allows control over shape (in particular, this
parameter will usually control tailweight):

1

σ
f

(
x− µ

σ
; δ

)
. (1.2)

It turns out — and this is not an especially novel observation although the
general treatment here might be useful — that in model (1.2) the location
parameter remains orthogonal to the scale parameter and is also orthogonal
to the shape parameter. In terms of inference on the location parameter,
which is often the main parameter of interest, this is itself a useful property.

Scale and shape parameters in this model, however, are not orthogonal.
Indeed, when the shape parameter is a tailweight parameter we will demon-
strate how a high (asymptotic) correlation between σ̂ and δ̂ often arises
where, as throughout the paper, hats over parameters denote ML estima-
tors. This, in turn, illustrates the degree of difficulty that the data has in
knowing what to assign to variations in scale and what to assign to variations
in tailweight. However, since there is just one nonzero asymptotic correlation
in this case, orthogonal reparametrisation is clearly possible (Cox & Reid,
1987), and this is investigated. The main purpose of this orthogonalisation
is probably to make the model more amenable to well-behaved numerical
likelihood maximisation.

Most experience to date suggests that the asymptotic independence of
location and other parameters is lost when a further parameter, γ say, al-
lowing and controlling asymmetry is introduced. Indeed, in almost all cases
we know of, this results in the appearance of no zero entries whatsoever in
the corresponding information matrix. This is certainly true of a variety of
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four-parameter distributions in the author’s own work (Jones & Faddy, 2003,
Jones, 2008a, Jones & Pewsey, 2009). The situation seems to be little differ-
ent for four-parameter Azzalini-type skew distributions (Azzalini, 1985). For
example, we can find no claim of zeroes in the information matrix of the skew
t distribution of Branco & Dey (2001) and Azzalini & Capitanio (2003) (see
also Azzalini & Genton, 2008). However, there is a single zero in a closely
related skew-t model investigated by Gómez, Venegas & Bolfarine (2007);
this zero corresponds to the term associated with skewness and tailweight
parameters.

Until recently, we thought that this situation might be inevitable. How-
ever, one specific model, a “two-piece” skew-t distribution (Fernández &
Steel, 1998) with a particular parametrisation of skewness (Arellano-Valle,
Gómez & Quintana, 2005) appears in the literature within which this is not
the case: location and skewness parameter are tied up, as are scale and
tailweight parameters, but each of the former pair are asymptotically in-
dependent of each of the latter. An information matrix of this form was
first produced in this special case — but without further comment — by
Gómez, Torres & Bolfarine (2007). In Section 3 of this paper, we show
that this is a general property of appropriately parametrised two-piece dis-
tributions. Moreover, we observe that one can go on, at least in principle, to
orthogonalise parametrisations within location/skewness and scale/tail pairs,
if desired. Unfortunately, combination of the two cannot be made to fully
orthogonalise the set of four parameters. However, a useful partly orthogonal
reparametrisation results in µ̂ being asymptotically independent of all three
other parameters (with the scale-tail orthogonality being preserved as well).

In Section 4, two-piece distributions with skewness but without an extra
shape parameter are dealt with briefly. Results here arise trivially from the
work of Section 3 but such distributions include some noteworthy special
cases.

This paper is essentially concerned with regular parametric likelihood
asymptotics. Standard regularity conditions to achieve consistency and asymp-
totic normality apply in Section 2. The models of interest in Sections 3 and 4
are derived from those in Section 2 with the addition of a discontinuity in ei-
ther first or, more often, second derivative with respect to µ of the likelihood
at the points µ = Xi, i = 1, ..., n; results apply under alternative regular-
ity conditions such as those of Huber (1967). The novelty of this paper lies
not in the theoretical techniques employed but in the insights the standard
theory affords.
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As a running example in Sections 2 and 3, take f to be fT , the density
of the Student t distribution (which is symmetric) with unknown degrees of
freedom δ (which controls tailweight):

fT (x; δ) = Kδ

(
1 +

x2

δ

)−
1
2
(δ+1)

where Kδ = Γ(1
2
(δ + 1))/{

√
πδ Γ(1

2
δ)}. When δ is fixed, µ̂ and σ̂ are indeed

asymptotically independent with asymptotic variances (δ + 3)σ2/{(δ + 1)n}
and (δ+3)σ2/(2δn), respectively (these formulae being special cases of those
to follow).

2. The three-parameter symmetric case

2.1. Likelihood fitting in the initial parametrisation

Write Yi = (Xi − µ)/σ, i = 1, ..., n. From (1.2), the log-likelihood is

ℓ(µ, σ, δ) = −n log σ +

n∑

i=1

log f(Yi; δ).

Let primes denote differentiation of f(x; δ) with respect to x and circles
denote differentiation of f(x; δ) with respect to δ. The score equations with
respect to each of µ, σ and δ in turn are

−1

σ

n∑

i=1

(log f)′(Yi; δ) = 0, − 1

σ

{
n +

n∑

i=1

Yi(log f)′(Yi; δ)

}
= 0,

n∑

i=1

(log f)◦(Yi; δ) = 0.

Elements of the observed information matrix are

− ∂2ℓ

∂µ2
= − 1

σ2

n∑

i=1

(log f)′′(Yi; δ), − ∂2ℓ

∂µ∂σ
= − 1

σ2

n∑

i=1

Yi(log f)′′(Yi; δ),

− ∂2ℓ

∂µ∂δ
=

1

σ

n∑

i=1

(log f)′◦(Yi; δ), − ∂2ℓ

∂σ2
=

1

σ2

{

n−
n∑

i=1

Y 2
i (log f)′′(Yi; δ)

}

,
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− ∂2ℓ

∂σ∂δ
=

1

σ

n∑

i=1

Yi(log f)′◦(Yi; δ), − ∂2ℓ

∂δ2
= −

n∑

i=1

(log f)◦◦(Yi; δ).

Now, let ιηξ = E {−(∂2ℓ/∂η∂ξ)(Y )} so that the expected information
matrix is n times the matrix made up of ι values. Then, the structure of the
information matrix arising from the symmetry of the model is as follows:

ιµµ = Im(δ)/σ2, ιµσ = 0, ιµδ = 0,

ισσ = Is(δ)/σ
2, ισδ = Ic(δ)/σ, ιδδ = Id(δ),

say, where the I functions are all independent of µ and σ. How so? Well,
first, the symmetry of f (and hence of log f) means that (log f)′ is an odd
function and (log f)′′ is an even function. Differentiation with respect to δ
does not disturb the symmetry of the function (because log f depends on
|x| only both before and after differentiation with respect to δ). Therefore,
(log f)◦◦ is an even function while (log f)′◦ is an odd function. This accounts
for the two zeroes — and no more — above. Second, the dependence on σ
and δ (and vanishing of µ) arises from noting that any function h, depending
on δ but not on µ and σ except through its dependence on Yi, has expectation

E(h(Y ; δ)) =

∫
h

(
x− µ

σ
; δ

)
1

σ
f

(
x− µ

σ
; δ

)
dx =

∫
h(w; δ)f(w; δ)dw,

which depends only on δ and not on µ or σ. In fact, we have

Im(δ) = −E {(log f)′′(X; δ)} , Is(δ) = 1 − E
{
X2(log f)′′(X; δ)

}
,

(2.1)

Ic(δ) = E {X(log f)′◦(X; δ)} , Id(δ) = −E {(log f)◦◦(X; δ)}

where X ∼ f(x; δ). Now, hide the explicit dependence of f on δ in the
following for convenience and define Ip =

∫
xp{(f ′)2/f}(x)dx. Of course,

Im(δ) = I0 > 0,

the Fisher information for location. It is also the case that
∫
x2(log f)′′(x)f(x)

dx =
∫
x2f ′′(x)dx− I2 = 2 − I2. It follows that

Is(δ) = I2 − 1 > 0,
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the inequality proveable using the Cauchy-Schwartz inequality. Also,

Id(δ) =

∫
{(f ◦)2/f}(x)dx > 0.

It is clear that the asymptotic independence of µ̂ and σ̂ is maintained
and is joined by asymptotic independence between µ̂ and δ̂. The asymptotic
variance of µ̂ remains the same as for the two-parameter (known δ) symmetric
case, as σ2/(I0n).

However, because ισδ 6= 0, the scale and shape parameters are not orthog-
onal. In fact, Corr(σ̂, δ̂), which does not depend on (µ or) σ asymptotically,
equals −Ic(δ)/

√
Is(δ)Id(δ). This correlation can be plotted as a function of

δ for each specific choice of f and this will be done for the t distribution in
Section 2.3. There and in other three-parameter symmetric families whose
maximum likelihood estimation we have investigated (distributions with sim-
ple exponential tails in Jones, 2008a; the symmetric sinh-arcsinh distribution
in Jones & Pewsey, 2009), the correlation is high for almost all practically
important values of δ. This reflects the fact that one cannot tell the difference
between changing scale and changing tailweight — for the shape parameter
controls tailweight in the models mentioned — very easily in practice.

2.2. Orthogonal reparametrisation

With just one nonzero asymptotic correlation, orthogonal reparametrisa-
tion (Cox & Reid, 1987) of σ and δ is possible, at least in principle, and in
a number of ways. Moreover, since the elements of the expected information
matrix do not depend on µ, any such orthogonal reparametrisation remains
orthogonal to µ. Orthogonal reparametrisations preserving one of the two
original parameters work out nicely because of the structure of the informa-
tion matrix in this case. The altered parameter is a product of functions of
σ and δ; the functions of σ are in each case simple and explicit; those of δ
are more complicated and may not be easy to obtain in practice.

First, seek an orthogonal reparametrisation of the form {µ, σ, χ(σ, δ)}.
Noting that δ is thus a function of σ and χ, we need (Cox & Reid, 1987,
Young & Smith, 2005, Section 9.2)

iδδ
∂δ

∂σ
+ iσδ = Id(δ)

∂δ

∂σ
+
Ic(δ)

σ
= 0. (2.2)
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This is satisfied whenever C(δ) = log σ+h(χ) where h here and below denotes
an arbitrary function and

C◦(δ) = −Id(δ)/Ic(δ). (2.3)

One version of the resulting orthogonal reparametrisation has the form

{µ, σ, C(δ) − log σ}

although arbitrary monotone transformations of any of these parameters are,
of course, also orthogonal.

A similar development for the reparametrisation {µ, ψ(σ, δ), δ} is possible,
leading via the requirement

Is(δ)

σ2

∂σ

∂δ
+
Ic(δ)

σ
= 0

to σ = h(ψ)/P (δ) and thus, up to monotone transformations, the orthogonal
parametrisation

{µ, σP (δ), δ}
where

(logP )◦(δ) = Ic(δ)/Is(δ). (2.4)

If σ is a parameter of interest, then the first of these reparametrisations
should be preferred; if δ, then the second. If neither is of particular interest
(as when µ alone is), then whichever is more tractable will have the edge.

2.3. Running example: the t distribution

The formulae involved in the expected information matrix for this case
are

Im(δ) =
δ + 1

δ + 3
, Is(δ) =

2δ

δ + 3
, Ic(δ) = − 2

(δ + 1)(δ + 3)

and

Id(δ) =
1

2

{
1
2
ψ′

(
1
2
δ
)
− 1

2
ψ′

(
1
2
(δ + 1)

)
− δ + 5

δ(δ + 1)(δ + 3)

}
.

These formulae match with asymptotic likelihood calculations for the t dis-
tribution in, for example, Lange, Little & Taylor (1989), Taylor & Verbyla
(2004) and Vasconcellos & da Silva (2005).
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The covariance between σ̂ and δ̂ is therefore

2/
(
(δ + 1)

[
1
2
δ(δ + 1)(δ + 3)

{
ψ′

(
1
2
δ
)
− ψ′

(
1
2
(δ + 1)

)}
− (δ + 5)

])1/2
.

This is plotted as the solid line in Fig. 1. The limit to which the correlation
quickly rises with increasing δ is actually 2/

√
7 ≃ 0.756. The key to proving

this is to show, via (6.4.12) of Abramowitz & Stegun (1965), that

ψ′
(

1
2
δ
)
− ψ′

(
1
2
(δ + 1)

)
≃ 2

δ2
+

2

δ3
+O

(
1

δ5

)

as δ → ∞.

* * * Fig. 1 about here * * *

The orthogonal reparameterisation of the form {µ, σ, C(δ)− log σ} is not
explicitly available in this case, but the orthogonal reparameterisation of the
form {µ, σP (δ), δ} is. This is because Ic(δ)/Is(δ) = −1/{δ(δ + 1)} so that
the orthogonalising factor is

P (δ) ∝ 1 +
1

δ
.

We attempted to mention this result on p.164 of Jones & Faddy (2003)
but unfortunately quoted the result wrong: that paper gives 1/P in place
of P . We have been unable to reconcile this result with the orthogonal
parametrisation put forward by Taylor & Verbyla (2004, p.98).

3. The four-parameter case

As described in the introduction, the transition from the three-parameter
symmetric case to the four-parameter (asymmetric) case typically results in
an absence of zero entries in the information matrix. It is, however, a different
story in one particular family of four-parameter asymmetric distributions.
There, it is readily possible to obtain an information matrix with four zeroes.
Asymptotic independence between location, µ, and both scale, σ, and tail, δ,
parameters is maintained, while one also obtains asymptotic independence
between skewness, γ, and both scale and tail parameters. In other words, the
four parameters {µ, γ, σ, δ} fall into two groups of two, {µ, γ} and {σ, δ}, with
asymptotic independence between any pair of parameters with one member
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in each group. A first example of such an information matrix in this type of
context appears in Gómez, Torres & Bolfarine (2007).

The family in question is that of ‘two-piece’ distributions. These are
simply made up by splitting a symmetric density at its centre, differentially
scaling its two halves, and putting the halves back together (with a continu-
ous and often differentiable join at the centre). Skewness is introduced and
controlled by a single parameter associated with the ratio of the differential
scalings. In density terms, we have

2

σ(a(γ) + b(γ))

{
f

(
x− µ

σb(γ)
; δ

)
I(x < µ) + f

(
x− µ

σa(γ)
; δ

)
I(x ≥ µ)

}
(3.1)

where I(A) is the indicator function of the set A. Of course, a(γ), b(γ) > 0
and when a(γ) = b(γ), a rescaled version of (1.2) returns. This particu-
lar way of parametrising the distribution is due to Arellano-Valle, Gómez &
Quintana (2005) and will be discussed further below. Two-piece distribu-
tions have a long history. In the case of normal f they go back to Fechner
(1897). Some of the more prominent papers concerning such distributions in-
clude Hansen (1994), Fernández & Steel (1998), Mudholkar & Hutson (2000),
Arellano-Valle et al. (2005), Bauwens & Laurent (2005) and Cassart, Hallin
& Paindaveine (2008). Alternative names for such distributions include split
distributions and epsilon-skew distributions.

3.1. Likelihood fitting in the Arellano-Valle et al. parametrisation

For simplicity, write a = a(γ) and b = b(γ). Then, the log-likelihood is

ℓ(µ, γ, σ, δ) = n log 2 − n log(a+ b) − n log σ

+

n∑

i=1

{
log f

(
Yi

b

)
I(Yi < 0) + log f

(
Yi

a

)
I(Yi ≥ 0)

}
.

The score equations and elements of the observed information matrix are
given in the Appendix. Now take expectations of the latter to form elements
of the expected information matrix. The oddness and evenness properties of
derivatives of log f , used in Section 2.1, also drive the following.

First, it is easy to see that

ιµσ = ιµδ = 0
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as in the symmetric case.
Second,

ιγσ = −1

σ

{
(a′ + b′)

∫ ∞

0

x(xg′′+(x) + g′+(x))f(x)dx

}

and

ιγδ = (a′ + b′)

∫ ∞

0

xg′◦+(x)f(x)dx.

These too will be zero if a′ +b′ = 0, a condition we impose from now on; that
is, we take a(γ)+ b(γ) = k where k is a positive constant whose precise value
is unimportant. For concreteness we take k = 2 and set a(γ) = 1 − h(γ),
b(γ) = 1 + h(γ) where −1 < h(γ) < 1. The simplest choice h(γ) = γ
was made by Mudholkar & Hutson (2000) and preferred in inferential work
by Arellano-Valle et al. (2005) and Cassart et al. (2008); it is an effective
one. However, asymptotic independence between skewness and the scale
and shape/tailweight parameters is sensitive to the skewness parametrisation
used. In particular, the aesthetically pleasing choice a(γ) = 1/γ, b(γ) = γ
(Fernández & Steel, 1998, Jones, 2006) is not an appropriate parametrisation
in this sense. It should also be noted that the efficacy of this parametrisation
is suggested by the information matrix in the special case of the two-piece
exponential power distribution with fixed δ provided by Arellano-Valle et al.
(2005): it includes ιµσ = ιγσ = 0.

In summary, the above yields four zeroes in the information matrix. They
correspond to each of the four pairs of parameters where one member of the
pair is taken from {µ, γ} and the other from {σ, δ}.

The remaining, non-zero, elements of the information matrix follow. Three
are precisely the same as before:

ισσ = Is(δ)/σ
2, ισδ = Ic(δ)/σ, ιδδ = Id(δ).

(So, therefore, is the asymptotic correlation between σ̂ and δ̂.) Also,

ιµµ =
Im(δ)

a(γ)(2 − a(γ))σ2

which reduces to its value in the symmetric case when a(γ) = 1. Finally,

ιµγ =
2a′(γ)

a(γ)(2 − a(γ))σ
Ih(δ)
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where

Ih(δ) = −
∫ ∞

0

{(log f)′(x)+x(log f)′′(x)}f(x)dx =

∫ ∞

0

x{(f ′)2/f}(x)dx > 0

and

ιγγ =
a′2(γ)

a(γ)(2 − a(γ))
{Is(δ) + 1}.

The asymptotic correlation between µ̂ and γ̂ is

−2sign(a′(γ))
Ih(δ)√

Im(δ)(Is(δ) + 1)
.

This is independent of the values of µ and σ and the only role of γ is to
determine its sign. Otherwise, the correlation is, again, a function of δ and,
again, typically increases to high values (in absolute terms). See Section 3.3
for an example.

3.2. Orthogonal reparametrisation in the four-parameter case

For the pair of parameters {σ, δ}, everything goes through precisely as in
Section 2.2. Moreover, since these reparametrisations do not depend on µ or
γ, the reparametrised scale/tail parameters remain orthogonal to µ and γ.

For the pair of parameters {µ, γ}, things go through analogously to the
work in Section 2.2. We will briefly spell out the details in the likely most
practically interesting case, that of µ being the interest-preserving parameter
(and {µ, χ(µ, γ)} being the orthogonal reparametrisation). The analogue of
(2.2) is

iγγ
∂γ

∂µ
+ iµγ =

a′2(γ)

a(γ)(2 − a(γ))
{Is(δ) + 1}∂γ

∂µ
+

2a′(γ)

a(γ)(2 − a(γ))σ
Ih(δ) = 0.

This is satisfied whenever a(γ) = −M(δ)σ−1µ + h(χ) so that the simplest
version of an orthogonal interest-preserving reparametrisation of µ, γ has the
form

{µ, a(γ) +M(δ)σ−1µ}.
Here, we have the explicit formula

M(δ) = 2Ih(δ)/(Is(δ) + 1). (3.2)
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In fact, a very similar argument goes through if γ is preserved instead of
µ. This alternative orthogonal reparametrisation is

{µ+ σG(δ)a(γ), γ}

where G(δ) = 2Ih(δ)/Im(δ).
Observe, however, that these reparametrisations depend on both δ and

σ as well as γ and µ. (This is inevitable given the dependence of ιµµ, ιµγ

and ιγγ on δ and σ.) This means that orthogonalising {µ, γ} results in non-
zero asymptotic correlations between the orthogonalised pair and elements
of {σ, δ} whether orthogonally reparametrised or not. One cannot, therefore,
provide a fully orthogonal reparametrisation of the two-piece distributions.
One can, for example, eschew any {µ, γ} reparametrisation and settle for
five zero elements in the expected information matrix by orthogonalising
only {σ, δ}. A rather better alternative, at least in inferential terms, would
appear to be to implement the µ-preserving reparametrisation given at and
above (3.2) together with any preferred {σ, δ} parametrisation. This yields
asymptotic orthogonality between µ̂ and each of the other three derived pa-
rameters (as well as a fourth zero in the information matrix if {σ, δ} are
orthogonally reparametrised). For example, one might employ

{µ, χ, ψ, δ} = {µ, a(γ) +M(δ)σ−1µ, σP (δ), δ}. (3.3)

Note that the asymptotic variance of the location estimate µ̂ is now
1/(nιµµ) = a(γ)(2 − a(γ))σ2/(nIm(δ)) = a(γ)(2 − a(γ))σ2/(nI0) which re-
duces to σ2/(nI0) only under symmetry. It is clear that this asymptotic
variance is smaller than that which pertained for µ̂ under the original non-
orthogonal parametrisation, namely,

a(γ)(2 − a(γ))
σ2

n

Is(δ) + 1

{Im(δ)(Is(δ) + 1) − 4I2
h(δ)} .

3.3. Example continued: the two-piece (skew) t distribution

The only formula appearing in the information matrix that was not given
in Section 2.2 is

Ih(δ) = 2(δ + 1)Kδ/(δ + 3).
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With this in place, the information matrix equates to that in Proposition 2.3
of Gómez et al. (2007) (except it should be noted that their formulae pertain
to the scale parameter σ2 not σ as claimed there).

The asymptotic correlation between estimated location, µ̂, and estimated
skewness parameter, γ̂, is

−2sign(a′(γ))Kδ/
√

3.

Its absolute value is plotted as the dashed line in Fig. 1. As δ increases, it
increases towards 4/

√
6π ≃ 0.921.

The explicit reparametrisation that affords orthogonality of µ̂ to all other
parameters together with orthogonality between its final two elements is
{µ, χ, ψ, δ} is {

µ, a(γ) +
4Kδµ

3σ
, σ

(
1 +

1

δ

)
, δ

}
.

4. The three-parameter two-piece case

This is the special case of Section 3 with no extra shape parameter δ.
Again, take a(γ) + b(γ) = 2. Immediately, the elements of the information
matrix for {µ, γ, σ} are as in Section 3.1 except that Im, Ih and Is are numbers
independent of any of the parameters. Partly orthogonal reparameterisations
– the novel contribution of this paper in this context, each with two zero off-
diagonal elements in the expected information matrix — are given by

{
µ, a(γ) +

2Ihµ

(Is + 1)σ
, σ

}
and

{
µ+

2Ihσa(γ)

Im
, γ, σ

}
.

The first of these is the probably more useful µ-preserving reparametrisation,
which is what we shall concentrate on below. It has nonzero asymptotic
correlation between a(γ̂) + 2{(Is + 1)σ̂}−1Ihµ̂ and σ̂.

4.1. Example: the two-piece (skew) normal distribution

When f = φ, the standard normal density, density (3.1) without δ reduces
to the two-piece skew-normal distribution (dating to Fechner, 1897) in the
parametrisation suggested by Mudholkar & Hutson (2000) (who use ǫ in place
of γ and set a(ǫ) = 1 − ǫ). This is also, of course, the limiting case of the
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two-piece t distribution as δ → ∞. In the two-piece normal case, Im = 1,
Ih =

√
2/π and Is = 2. The asymptotic variance-covariance matrix of the

ML estimators of µ, γ and σ then corresponds with that given in Theorem
4.7 of Mudholkar & Hutson (2000) (except that they give it for σ2 rather
than σ). Mudholkar & Hutson go on to note that the asymptotic correlation
between µ̂ and γ̂ is 4/

√
6π ≈ 0.921, which is the value associated with δ → ∞

in Section 3.3.
The µ−preserving partly orthogonal reparametrisation in this case turns

out to be {

µ, a(γ) +
2

3

√
2

π

µ

σ
, σ

}

.

(This is, again, the δ → ∞ special case of the corresponding reparametrisa-
tion for the two-piece t distribution.)

4.2. Example: the asymmetric Laplace distribution

When f is the standard Laplace (double exponential) density e−|x|/2,
(3.1) without δ yields the asymmetric Laplace density (Kotz, Kozubowski &
Podg- órski, 2001, Section 3). Partly orthogonal reparametrisations appear
to be new. The µ−preserving one is:

{
µ, a(γ) +

1

2σ
, σ

}
.

5. Closing remarks

There is often more than one way of producing a four-parameter family
of distributions with some broadly similar desirable features. For example,
there are a number of different “skew t” distributions, compared briefly in
Jones (2008b, including its rejoinder). In that comparison, various skew t
distributions exhibit pros and cons and we regarded several of them as still
“jostling for position”, with preferences being dependent on the problem at
hand and, to some extent, individual investigator. We steered clear of inferen-
tial comparisons but expected them to be equally inconclusive. However, the
current paper seems to suggest a possible inferential advantage of two-piece
distributions over their competitors, none of which yet exhibit similar traits
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of parameter orthogonalisability. (Indeed, two-piece distributions have none
of the difficulties concerning non-full-rank information matrices for certain
important parameter values that also beset some alternatives, e.g. Azzalini
& Genton, 2008.) The question remains: is this an intrinsic (or important)
advantage of this particular two-piece approach to four-parameter distribu-
tions or have researchers just not yet been able to spot similar simplifications
in other contexts?

Appendix

The following formulae pertain to the four-parameter case being studied in
Section 3.1. Write g+(y) = (log f)(y; δ)I(y > 0) and g−(y) = (log f)(y; δ)I(y < 0).
The score equations with respect to each of µ, γ, σ and δ in turn are

− 1

σ

n∑

i=1

{
1

b
g′−

(
Yi

b

)
+

1

a
g′+

(
Yi

a

)}
= 0,

−
n∑

i=1

Yi

{
b′

b2
g′−

(
Yi

b

)
+

a′

a2
g′+

(
Yi

a

)}
− n

(
a′ + b′

a + b

)
= 0,

− 1

σ

[
n +

n∑

i=1

Yi

{
1

b
g′−

(
Yi

b

)
+

1

a
g′+

(
Yi

a

)}]
= 0,

n∑

i=1

{
g◦−

(
Yi

b

)
+ g◦+

(
Yi

a

)}
= 0

and the negative second derivatives are

− ∂2ℓ

∂µ2
= − 1

σ2

n∑

i=1

{
1

b2
g′′−

(
Yi

b

)
+

1

a2
g′′+

(
Yi

a

)}
,

− ∂2ℓ

∂µ∂γ
= − 1

σ

n∑

i=1

[
b′

b2
g′−

(
Yi

b

)
+

a′

a2
g′+

(
Yi

a

)
+ Yi

{
b′

b3
g′′−

(
Yi

b

)
+

a′

a3
g′′+

(
Yi

a

)}]
,

− ∂2ℓ

∂µ∂σ
= − 1

σ2

n∑

i=1

Yi

{
1

b2
g′′−

(
Yi

b

)
+

1

a2
g′′+

(
Yi

a

)}
,

− ∂2ℓ

∂µ∂δ
=

1

σ

n∑

i=1

{
1

b
g′◦−

(
Yi

b

)
+

1

a
g′◦+

(
Yi

a

)}
,
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− ∂2ℓ

∂γ2
=

n∑

i=1

[
Yi

{(
b′′b − 2b′2

b3

)
g′−

(
Yi

b

)
+

(
a′′ − 2a′2

a3

)
g′+

(
Yi

a

)}

− Y 2
i

{
b′2

b4
g′′−

(
Yi

b

)
+

a′2

a4
g′′+

(
Yi

a

)}]
+ n

{
a′′ + b′′

a + b
−

(
a′ + b′

a + b

)2
}

,

− ∂2ℓ

∂γ∂σ
= − 1

σ

n∑

i=1

[
Yi

{
b′

b2
g′−

(
Yi

b

)
+

a′

a2
g′+

(
Yi

a

)}
+ Y 2

i

{
b′

b3
g′′−

(
Yi

b

)
+

a′
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(
Yi

a
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,

− ∂2ℓ

∂γ∂δ
=
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i=1

[
Yi
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b′

b2
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(
Yi

b

)
+

a′

a2
g′◦+

(
Yi

a

)}]
,

− ∂2ℓ

∂σ2
=

1

σ2

[

n −
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i=1

Y 2
i

{
1

b2
g′′−

(
Yi

b

)
+

1

a2
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(
Yi

a
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,

− ∂2ℓ
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=

1

σ

n∑

i=1

[
Yi

{
1

b
g′◦−

(
Yi

b

)
+

1

a
g′◦+

(
Yi

a
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,

−∂2ℓ

∂δ2
= −

n∑

i=1

{
g◦◦−

(
Yi

b

)
+ g◦◦+

(
Yi

a

)}
.
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Lange, K.L., Little, R.J.A., Taylor, J.M.G., 1989. Robust statistical model-
ing using the t distribution. J. Amer. Statist. Assoc. 84, 881–896.

Mudholkar, G.S., Hutson, A.D., 2000. The epsilon-skew-normal distribution
for analyzing near-normal data. J. Statist. Planning Inference, 83, 291–
309.

Taylor, J., Verbyla, A., 2004. Joint modelling of location and scale parame-
ters of the t distribution. Statist. Modelling, 4, 91–112.

Vasconcellos, K.L.P., da Silva, S.G., 2005. Corrected estimates for Student t
regression models with unknown degrees of freedom. J. Statist. Com-
put. Simulation 75, 409–423.

Young, G.A., Smith, R.L., 2005. Essentials of Statistical Inference. Cam-
bridge University Press, Cambridge.

18



Fig. 1. The asymptotic correlations between σ̂ and δ̂ (solid line) in the t and
two-piece t cases, and the absolute value of that between µ̂ and γ̂ (dashed
line) in the two-piece t case. Each is plotted as a function of log10 δ.
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