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and M.C. Jones

The Open University, Milton Keynes, UK

Summary. This article considers a general Fourier series based approach to obtaining the

bivariate circular analogues of copulas recently coined ‘circulas’. In contrast to standard cop-

ulas, circulas are periodic and have marginals that are circular uniform. As examples of the

general construction we consider a number of classes of circulas arising from different patterns

of non-zero Fourier coefficients. The shape and sparsity of such arrangements are found to

play a key role in determining the properties of the resultant models. The special cases of the

circulas we consider all have simple closed-form expressions for their densities which involve no

computationally demanding normalizing constants. Methods for simulation, model identifica-

tion, parameter estimation and testing for independence and goodness-of-fit are developed and

applied in illustrative analyses of toroidal data sets.
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1 Introduction

Circular data, corresponding to directions or the time of the day, month or year, arise in scientific

disciplines as wide-ranging as biology, meteorology, astronomy, geology and the political and

behavioural sciences (Pewsey et al., 2013). The description of such data as ‘circular’ reflects

the fact that their natural support is the unit circle, S1. In many contexts, the relationship

between two circular random variables will be of interest. The natural support for bivariate

circular vectors is the unit torus T2 = S1 × S1, data on them sometimes being referred to as

‘toroidal’.

This paper considers a general construction, based on Fourier series, for the circular ana-

logues of bivariate copulas recently termed ‘circulas’ by Jones et al. (2015). An analogous

result to Sklar’s theorem (Sklar, 1959) states that the distribution function F of a bivariate

vector (Θ1,Θ2) of continuous circular random variables distributed on T2 can be related to the

marginal distribution functions of Θ1 and Θ2, F1 and F2, through the circula C as

F (θ1, θ2) = C(2πF1(θ1), 2πF2(θ2)), 0 ≤ θ1, θ2 < 2π. (1)

C is itself a bivariate circular distribution function, with marginal distributions that are circular

uniform rather than the (linear) uniform ones of copulas. (For discussion of the most appropriate
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starting points for circular distribution functions, see Section 4.2.) Taking partial derivatives,

the density of (Θ1,Θ2) is

f(θ1, θ2) = 4π2f1(θ1)f2(θ2)c(2πF1(θ1), 2πF2(θ2)), (2)

where f1 and f2 are the marginal densities of Θ1 and Θ2 and c is the circula density correspond-

ing to C. Importantly, circula densities are periodic with

c(θ1 ± 2πk, θ2 ± 2πl) = c(θ1, θ2), k, l = 0, 1, ... .

In addition, circula densities are usually assumed to be continuous at θ1 = 2kπ and θ2 = 2lπ

as well as all other points on the circle. It follows from (2) that the conditional density of

Θ2|Θ1 = θ1 is

f(θ2|θ1) = 4π2f2(θ2)c(2πF1(θ1), 2πF2(θ2)), (3)

likewise for f(θ1|θ2).
Jones et al. (2015) provide an in-depth treatment of what, as far as we are aware, has

been the only explicitly proposed circula to date. Often ascribed to Wehrly & Johnson (1980),

that circula has density c(2πF1(θ1), 2πF2(θ2)) = g(2πF1(θ1)± 2πF2(θ2))/2π, g being a circular

density referred to as the ‘binding’ density. Our purpose here is to introduce a far more

general, Fourier series based, construction for flexible circula distributions with simple closed-

form expressions for their densities.

Section 2 provides the details of the proposed general construction together with results for

three circular dependence measures and the conditional mean directions and mean resultant

lengths of circulas generated using it. The way dependence measures, in particular, depend

on the Fourier coefficients on which the circulas are based is especially simple and attractive.

Section 3 introduces a number of fundamental classes of circulas obtained using the general

construction and provides details of their basic properties. The second of the classes corresponds

to the circula of Wehrly & Johnson (1980). Section 4 discusses simulation, model identification,

parameter estimation and tests for independence and goodness-of-fit, both for the proposed

circulas and the models for toroidal data derived from them. Two of the new classes and the

proposed inferential methodology are applied in illustrative analyses of two toroidal datasets

in Section 5. The paper ends with Section 6 devoted to discussion. An appendix provides

proofs of Theorems 1 and 2, and a Supplementary Materials document available from the

journal website presents some extended classes of circulas and various complementary figures.

To distinguish them from the ones in this main document, the labels of the figures and sections

in the Supplementary Materials document include an initial letter S prior to their numbers.

2 Fourier series based circula densities

It is well-known (Mardia & Jupp, 1999, Sec. 3.3.2) that any continuous circular density, f , can

be expressed in the form of a Fourier series as

f(θ) =
1

2π

∞∑
m=−∞

ϕ(m) e−imθ, −π ≤ θ < π,

for appropriately chosen Fourier coefficients ϕ(m), m ∈ Z. Here we consider a family of

continuous distributions on the torus whose density can be expressed analogously as

f(θ1, θ2) =
1

4π2

∞∑
m,n=−∞

ϕ(m,n) e−i(mθ1+nθ2), −π ≤ θ1, θ2 < π, (4)
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where the Fourier coefficients ϕ(m,n) ∈ C, m, n ∈ Z are appropriately defined so that

f(θ1, θ2) ≥ 0 and
∫ π

−π

∫ π

−π
f(θ1, θ2)dθ1dθ2 = 1. As the following theorem shows, ϕ(m,n) is

related to the characteristic function of the distribution with density (4).

Theorem 1 If a random vector (Θ1,Θ2) has density (4) then

E
[
ei(mΘ1+nΘ2)

]
= ϕ(m,n), m, n ∈ Z.

It follows from Theorem 1 that, for any ϕ(m,n) in (4),

ϕ(m,n) = ϕ(−m,−n), |ϕ(m,n)| ≤ 1 and ϕ(0, 0) = 1, (5)

where z denotes the complex conjugate of z. So, if ϕ(m,n) is real, which is the case for all

the classes of circulas proposed in Section 3, ϕ(−m,−n) = ϕ(m,n). Henceforth we refer to the

series on the right-hand side of (4) as a Fourier series.

The following theorem identifies those densities in (4) that are circula densities, i.e. for

which both marginal densities are circular uniform.

Theorem 2 A density in family (4) is a circula density if and only if

ϕ(m, 0) =

{
1, m = 0,

0, m ̸= 0,
and ϕ(0, n) =

{
1, n = 0,

0, n ̸= 0,
m, n ∈ Z. (6)

Such circula densities can be expressed as

c(θ1, θ2) =
1

4π2

[
1 + 2Re

{ ∞∑
m=1

∞∑
n=−∞
n̸=0

ϕ(m,n) e−i(mθ1+nθ2)

}]
(7)

=
1

4π2

[
1 + 2Re

{ ∞∑
n=1

∞∑
m=−∞
m̸=0

ϕ(m,n) e−i(mθ1+nθ2)

}]
.

Note that if ϕ(m,n) = 0 for all m,n ̸= 0, the distribution is the bivariate circular uniform. The

remainder of the paper focuses on developing circula densities using Equations (4) and/or (7),

their use in deriving flexible models through Equation (2), and the application of such models

in the modelling of toroidal data.

2.1 Circular dependence measures

Here we provide general results for three existing signed circular dependence measures when

applied to circulas. The measures considered are those of Rivest (1982), Jammalamadaka &

Sarma (1988) and Fisher & Lee (1983) which we denote by ρR, ρJS and ρFL, respectively.

For a circula, the circular dependence measures of Rivest (1982) and Jammalamadaka &

Sarma (1988) are the same and have a very simple and close relationship with the circula

densities in Equation (7), being given in terms of ϕ(m,n) as ρR = ρJS = |ϕ(1,−1)| − |ϕ(1, 1)|.
Clearly, when only one of ϕ(1,−1) and ϕ(1, 1) is non-zero, then

ρR = ρJS =

{
|ϕ(1,−1)| if ϕ(1,−1) ̸= 0,

−|ϕ(1, 1)| if ϕ(1, 1) ̸= 0.
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For a circula it is easily shown that the circular dependence measure of Fisher & Lee (1983)

is given by ρFL = |ϕ(1,−1)|2 − |ϕ(1, 1)|2. Hence, when only one of ϕ(1,−1) and ϕ(1, 1) is

non-zero,

ρFL =

{
|ϕ(1,−1)|2 if ϕ(1,−1) ̸= 0,

−|ϕ(1, 1)|2 if ϕ(1, 1) ̸= 0,

and thus the magnitude of ρFL is the square of the magnitude of ρR = ρJS.

These findings are appealing because of their simplicity.

2.2 Conditional mean directions and resultant lengths

Using density (4) with circular uniform marginals, the first trigonometric moment of Θ1|Θ2 = θ2
for the corresponding circula can be expressed as

E(eiΘ1|θ2) =

∫ π

−π

eiθ1c(θ1|θ2)dθ1

=

∫ π

−π

eiθ1

(
1

2π

∞∑
m,n=−∞

ϕ(m,n) e−i(mθ1+nθ2)

)
dθ1

=
1

2π

∞∑
m,n=−∞

ϕ(m,n)

∫ π

−π

e−i{(m−1)θ1+nθ2}dθ1

=
∞∑

n=−∞

ϕ(1, n)e−inθ2 , (8)

where c(θ1|θ2) denotes the conditional density of Θ1|Θ2 = θ2. Similarly,

E(eiΘ2 |θ1) =
∞∑

m=−∞

ϕ(m, 1)e−imθ1 (9)

=
∞∑

m=1

ϕ(m, 1)e−imθ1 +
∞∑

m=1

ϕ(m,−1)e−imθ1 . (10)

Expression (8) implies that, in order to calculate the mean direction and mean resultant

length of Θ1|Θ2 = θ2, it suffices to focus on the non-zero Fourier coefficients in the m = 1

column of the planar plot of {ϕ(m,n)}m,n∈Z. (See Figure 1 for examples of such plots.) It then

follows that:

(a) If all the coefficients in the m = 1 column are zero, the mean resultant length of the

conditional distribution of Θ1|Θ2 = θ2, R(Θ1|θ2) ≡ |E(eiΘ1 |θ2)|, is zero;

(b) If there is only one non-zero coefficient in the m = 1 column, say at (m,n) = (1, d), the

mean direction of the conditional distribution of Θ1|Θ2 = θ2,M(Θ1|θ2) ≡ arg(E(eiΘ1 |θ2)),
is −dθ2 and R(Θ1|θ2) = |ϕ(1, d)|;

(c) If there are two or more non-zero coefficients in the m = 1 column, M(Θ1|θ2) is nonlinear
and R(Θ1|θ2) is in general heteroscedastic.

Analogous results for the conditional distribution of Θ2|Θ1 = θ1 follow from considering Equa-

tion (9). From the equivalent expression (10), the mean direction and mean resultant length of

Θ2|Θ1 = θ1 only depend on the non-zero coefficients for m ≥ 1 in the n = ±1 rows.
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Figure 1: Examples of patterns of non-zero Fourier coefficients for Classes 1–8 with q = −1

and m,n ∈ {0, 1, ..., 6}. The values of m appear on the horizontal axes, and those for n on the

vertical axes. The area of a dot at (m,n) is proportional to the value of ϕ(m,n). The panels

for the eight classes are ordered from top left to bottom right, reading from left to right.

3 Classes of Fourier series based circula densities

In this section we consider eight classes of (7) with simple patterns for their non-zero Fourier

coefficients and provide details of their basic properties. Given Equation (5) and Theorem 2,

unless explicitly stated otherwise, we consider classes of circula densities defined through non-

zero Fourier coefficients on the Z+× (Z+∪Z−) lattice. We begin with densities generated using

very simple arrangements for their non-zero Fourier coefficients before moving on to others

derived using more elaborate patterns. Figure 1 illustrates patterns of the non-zero Fourier

coefficients corresponding to Classes 1–8. The special cases of the various classes of circulas

considered are derived using geometric series of non-zero Fourier coefficients to generate flexible

models with closed-form expressions for their densities. In order to obtain circula densities

exhibiting pointwise symmetry about the origin, all of the non-zero Fourier coefficients of the

eight classes are assumed to be real. A circula density, c, is pointwise symmetric about (0, 0) if

c(θ1, θ2) = c(−θ1,−θ2) for all (θ1, θ2) ∈ [−π, π)2.
Since all of the classes of circulas we consider have at most one of ϕ(1,−1) and ϕ(1, 1)

which is non-zero, we only quote values of ρR, those for ρJS and ρFL following from the relations

identified in Section 2.1.
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Figure 2: Planar contour plot of circula density (11) with parameter vector (q, γ) = (1, 0.3).

The cross identifies (θ1, θ2) = (0, 0).

3.1 Class 1: Single (non-zero) point

Let

ϕ(m,n) =

{
γ, (m,n) = (1,−q),
0, otherwise,

where 0 ≤ γ ≤ 1/2, and q ∈ {−1, 1}. Thus, this class is generated by a single non-zero

real-valued Fourier coefficient on the Z+ × (Z+ ∪ Z−) lattice.

In this case, the circula density (7) reduces to

c(θ1, θ2) =
1

4π2
{1 + 2γ cos(θ1 − qθ2)} . (11)

The mode and antimode of (11) occur at every point along the lines θ1 = qθ2 and θ1 = qθ2 + π,

respectively, where −π ≤ θ1, θ2 < π. Figure 2 portrays a planar contour plot of density (11)

when q = 1 and γ = 0.3.

For this class, ρR = qγ. The strength of dependence between Θ1 and Θ2 is thus controlled by

γ, and its sign by q. This role of q is the same for all the classes considered in this section. The

conditional distributions of Θ1|Θ2 = θ2 and Θ2|Θ1 = θ1 are cardioid distributions on the circle

with mean directions M(Θ1|θ2) = qθ2 and M(Θ2|θ1) = qθ1, respectively, and mean resultant

lengths R(Θ1|θ2) = R(Θ2|θ1) = γ. So this class affords ‘linear-homoscedastic’ circular-circular

regression in both directions.

3.2 Class 2: Diagonal line

Here we consider a class of circula densities generated using non-zero Fourier coefficients on a

diagonal of the Z+ × (Z+ ∪ Z−) lattice. Specifically, let

ϕ(m,n) =

{
ψ(m), n = −qm,
0, n ̸= −qm,

where the ψ(m) are the Fourier coefficients of any circular distribution, for which ψ(0) = 1,

and q ∈ {−1, 1}. Then the circula density is of the form

c(θ1, θ2) =
1

2π
g(θ1 − qθ2), (12)
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where g(θ) = (2π)−1[1 + 2Re{
∑∞

m=1 ψ(m)e−imθ}] is a density on the unit circle. This is the

class of circulas discussed in Jones et al. (2015). For all but the case when g is circular uniform,

(12) has linear contours parallel to the qπ/4 diagonal. If the polar representation of g(θ) is

unimodal with mode (antimode) at θ = ω∗
g , then the maxima (minima) of (12) are situated

along the line θ1 = qθ2 + ω∗
g (−π ≤ θ1, θ2 < π).

When applying Equation (8),

ϕ(1, n) =

{
ψ(1) = Rge

iMg , n = −q,
0, otherwise,

where Mg and Rg are the mean direction and mean resultant length, respectively, of the distri-

bution with density g. Therefore, E(eiΘ1 |θ2) = Rge
i(qθ2+Mg), and hence M(Θ1|θ2) = qθ2 +Mg

and R(Θ1|θ2) = Rg. Using Equation (10), M(Θ2|θ1) = q(θ1 −Mg) and R(Θ2|θ1) = Rg. This

class thus affords a general class of circulas with ‘linear-homoscedastic’ circular-circular regres-

sion in both directions, Rg taking the role of γ in Class 1. For this model, ρR = qRg. Density

(12) reduces to (11) when ψ(1) = γ and ψ(m) = 0 otherwise, and 0 ≤ γ ≤ 1/2.

When ψ(m) = γρm−1 (m = 1, 2, ..., 0 ≤ γ < 1, 2γ − 1 ≤ ρ < 1), density (12) can be

expressed in closed form as

c(θ1, θ2) =
1

4π2

{
1 + 2γ

cos(θ1 − qθ2)− ρ

1 + ρ2 − 2ρ cos(θ1 − qθ2)

}
. (13)

For this subclass, all three parameters, γ = ϕ(1,−q) = ψ(1), ρ and q, affect the dependence

between θ1 and θ2 although, as elsewhere, ρR = qγ. Figure S4 presents planar contour plots

of density (13) for q = −1, γ = 0.7 and three values of ρ. Note that density (13) can also

be represented as the following two component mixture with toroidal uniform and wrapped

Cauchy-like component densities and mixing probability γ/ρ,

c(θ1, θ2) =

(
1− γ

ρ

)
1

4π2
+

(
γ

ρ

)
1

4π2

1− ρ2

1 + ρ2 − 2ρ cos(θ1 − qθ2)
.

The parameter ρ regulates the concentration of the wrapped Cauchy-like distribution. The

maxima and minima of density (13) are given along the lines θ1 = qθ2 and θ1 = qθ2 + π (−π ≤
θ1, θ2 < π), respectively, for any γ and ρ ≥ 0. Both conditional distributions are special cases

of the circular distribution of Kato and Jones (2015) which are two component mixtures with

circular uniform and wrapped Cauchy components. In addition, it immediately follows from the

general results given in the last paragraph that the mean directions and mean resultant lengths

for both conditionals are M(Θ1|θ2) = qθ2, M(Θ2|θ1) = qθ1 and R(Θ1|θ2) = R(Θ2|θ1) = γ.

3.3 Class 3: Vertical line

Now consider the class of circula densities generated using non-zero Fourier coefficients on the

vertical line of the Z+ × (Z+ ∪ Z−) lattice given by

ϕ(m,n) =

{
ψ(n), m = 1, qn ≤ −1,

0, otherwise,
(14)

for some non-zero Fourier coefficients ψ and q ∈ {−1, 1}.
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For example, if ψ(n) = γρ|n|−1 (0 ≤ γ ≤ 1/2, 0 ≤ ρ ≤ 1− 2γ), then

c(θ1, θ2) =
1

4π2

{
1 + 2γ

cos(θ1 − qθ2)− ρ cos θ1
1 + ρ2 − 2ρ cos θ2

}
. (15)

The mode and antimode of density (15) occur at (θ1, θ2) = (0, 0) and (θ1, θ2) = (−π, 0), re-
spectively. As for density (13), γ = ϕ(1,−q) = ψ(1) so that ρR = qγ. Panels (a) and (b) of

Figure S3 present planar contour plots of density (15) with q = 1 and two (γ, ρ) combinations.

The dependence between Θ1 and Θ2 is clearly regulated by all three parameters: q, γ and ρ. In

particular, γ regulates the strength of the dependence between Θ1 and Θ2, and ρ the degree of

deformation of the density’s shape around the main diagonal.

As was the case for density (13), density (15) can also be represented as a two-component

mixture, in this case, as a mixture of the toroidal uniform density and (15) with its γ = 1/2.

Specifically,

c(θ1, θ2) = (1− 2γ)
1

4π2
+ 2γ

1

4π2

{
1 +

cos(θ1 − qθ2)− ρ cos θ1
1 + ρ2 − 2ρ cos θ2

}
,

the mixing probability being 2γ.

Using Equation (8), the first trigonometric moment of the conditional distribution of Θ1|Θ2 =

θ2 is E(e
iΘ1 |θ2) = γ/(e−iqθ2−ρ). Hence,M(Θ1|θ2) = arg(γ/(e−iqθ2−ρ)) = atan2(q sin θ2, cos θ2−

ρ), where atan2(y, x) returns the angle measured anticlockwise from the x-axis to the vector

connecting the origin with (x, y). This regression curve is a special case of the regression curve

of Rivest (1997). Also, R(Θ1|θ2) = |γ/(e−iqθ2 − ρ)| = γ/(1 + ρ2 − 2ρ cos θ2)
1/2. Using Equation

(10), M(Θ2|θ1) = qθ1 and R(Θ2|θ1) = γ. The conditional distribution of Θ1|Θ2 = θ2 is a

cardioid distribution and that of Θ2|Θ1 = θ1 follows a special case of the distribution of Kato

& Jones (2015).

It is possible to extend the domain of ρ to include [2γ − 1, 0). However this extension

does not generalise the density (15) apart from location shifts because of the relationship

c(θ1, θ2; γ, ρ, q) = c(θ1 + π, θ2 + π; γ,−ρ, q).

3.4 Class 4: Square

This class arises from using a square pattern of non-zero Fourier coefficients. As an attractive

three-parameter example of this, let

ϕ(m,n) =

{
γρm−1

1 ρ
|n|−1
2 , m,−qn ∈ Z+,

0, otherwise,

where 0 < ρ1, ρ2 < 1 and q ∈ {−1, 1}. Density (7) then becomes

c(θ1, θ2) =
1

4π2

{
1 + 2γ

cos(θ1 − qθ2)− ρ2 cos θ1 − ρ1 cos θ2 + ρ1ρ2
(1 + ρ21 − 2ρ1 cos θ1)(1 + ρ22 − 2ρ2 cos θ2)

}
, −π ≤ θ1, θ2 < π, (16)

where

0 ≤ γ ≤


ρ1ρ2/[{(1− ρ21)(1− ρ22)}−1 − 1], |ρ1 − ρ2| ≤ ρ1ρ2,

(1− ρ1)(1 + ρ2)/2, |ρ1 − ρ2| > ρ1ρ2, ρ1 > ρ2,

(1 + ρ1)(1− ρ2)/2, |ρ1 − ρ2| > ρ1ρ2, ρ1 < ρ2.

(17)

Figure S5 presents a contour plot of the maximum value of γ as a function of ρ1 and ρ2. The

maximum of γ tends to 0.5 as (ρ1, ρ2) → (0, 0).
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Figure 3: Planar contour plots of circula density (16) with q = 1 and (ρ1, ρ2, γ) equal to:

(a) (0.2, 0.2, 0.470); (b) (0.2, 0.5, 0.300); (c) (0.5, 0.5, 0.321). For each panel, the value of γ

corresponds to the upper bound of inequality (17).

The mode of density (16) occurs at (θ1, θ2) = (0, 0). If |ρ1 − ρ2| > ρ1ρ2, then there is only

one antimode of (16) which occurs at (θ1, θ2) = (0,−π) for ρ1 > ρ2 and (θ1, θ2) = (−π, 0) for
ρ1 < ρ2. When |ρ1−ρ2| ≤ ρ1ρ2, there are two antimodes which occur at (θ1, θ2) = ±(α1,−qα2),

where αj = arg{ρj + (1− ρ2j)/(ρj + eixj)} = atan2{−(1− ρ2j) sin xj, ρj(2 + ρj cos xj)}. For this
model, ρR = qγ.

Planar contour plots of circula density (16) designed to illustrate the roles of ρ1 and ρ2 are

displayed in Figure 3. When ρ1 = ρ2 the density is symmetric about the main diagonal and

increasingly concentrated in the neighbourhood of the origin as ρ1 = ρ2 increases. For a fixed

value of ρ1, as ρ2 increases the main axis of the central elliptical contour tilts increasingly away

from the main diagonal towards θ2 = 0 and the dispersion increases in the neighbourhood of

(−π,−π) = (π, π). Due to the symmetry of (16), for a fixed value of ρ2 the main axis tilts

increasingly towards θ1 = 0 as ρ1 increases.

The conditional density of Θ1|Θ2 = θ2 can be seen to be that of a special case of the Kato

& Jones (2015) distribution. Proceeding as for Class 3, M(Θ1|θ2) = atan2(q sin θ2, cos θ2 − ρ2)

and R(Θ1|θ2) = γ/(1 + ρ22 − 2ρ2 cos θ2)
1/2. The conditional distribution of Θ2|Θ1 = θ1 is also a

special case of the Kato & Jones (2015) distribution, with M(Θ2|θ1) = qθ1 and R(Θ2|θ1) = γ.

3.5 Class 5: Upper triangle

The circula density (13) of Class 2 can be extended using an arrangement of non-zero Fourier

coefficients forming an upper triangular pattern with the following particular specification:

ϕ(m,n) =

{
γρm−1λ−(m+qn), 1 ≤ m ≤ −qn,
0, otherwise,

where 0 < ρ < 1, 0 ≤ λ < 1, and q ∈ {−1, 1}. The constraints on γ are

0 ≤ γ ≤

{
ρ(1− ρ2)(1− λ2)/[1− ρ2(1− λ2)], λ ≥ (1− ρ)/ρ,

(1− λ)(1 + ρ)/2, λ < (1− ρ)/ρ.
(18)

A contour plot of the maximum value of γ as a function of ρ and λ is presented in Figure S6.

The maximum of γ tends to 1 as (ρ, λ) → (1, 0).

9



(a) (b) (c)

 0
.0

1 

 0
.0

1 

 0
.0

1 

 0
.0

1 

 0
.0

2  0
.0

2 

 0
.0

2 

 0
.0

2  0
.0

4 

 0
.0

4 

 0
.0

4 

 0
.0

6 

 0
.0

6 

 0
.0

6 

 0
.0

8 

 0
.0

8 
 0

.1
 

 0
.1

 

 0
.1

2 
 0

.1
2 

− π − π 2 0 π 2 π

−
π

−
π

2
0

π
2

π

 0.01 

 0.01 

 0.02 

 0
.0

2 

 0.02 

 0
.0

2 

 0.04 

 0
.0

4 

 0.04 

 0
.0

4 

 0.06 

 0.06 

 0.08 

 0.1 

− π − π 2 0 π 2 π

−
π

−
π

2
0

π
2

π

 0.01  0.01 

 0
.0

3 

 0
.0

3 

 0
.0

3 
 0

.0
3 

 0.04 

 0.05 

 0.08 

− π − π 2 0 π 2 π

−
π

−
π

2
0

π
2

π

Figure 4: Planar contour plots of circula density (19) for q = 1, ρ = 0.6 and (λ, γ) equal to: (a)

(0, 0.8); (b) (0.4, 0.48); (c) (0.8, 0.16). For each panel, the value of γ corresponds to the upper

bound of inequality (18).

For this case, the circula density is

c(θ1, θ2) =
1

4π2

[
1 + 2γ

cos(θ1 − qθ2)− λ cos θ1 + ρλ cos θ2 − ρ

{1 + ρ2 − 2ρ cos(θ1 − qθ2)}(1 + λ2 − 2λ cos θ2)

]
, −π ≤ θ1, θ2 < π.

(19)

The mode of the density is located at (θ1, θ2) = (0, 0), and the antimode(s) at (θ1, θ2) = (−π, 0)
if λ < (1 − ρ)/ρ or at (θ1, θ2) = ±(α1,−qα2) if λ ≥ (1 − ρ)/ρ. Here α1 = −α2 + atan2{(1 −
ρ2) sin x1, ρ(2+ρ cosx1)}, α2 = atan2{−(1−λ2) sin x2, 2λ+(1+λ2) cos x2}, x1 = arccos{(−1−
ρ2 + ρ2λ2)/(2ρ)}, and x2 = arccos{(1− ρ2 − ρ2λ2)/(2ρ2λ)}. When λ = 0, (19) reduces to (13)

of Class 2. For this model too, ρR = qγ.

Figure 4 presents planar contour plots of the circula density (19) for q = 1, ρ = 0.6 and

three combinations of λ and γ. When λ = 0 the contours are straight lines. This is because

(19) reduces to (13) when λ = 0. As λ increases, the axis of the central elliptical contour tilts

increasingly away from the main diagonal towards θ2 = 0 and the other contours tend to be

increasingly asymmetric about the main diagonal.

The conditional distribution of Θ1 given Θ2 = θ2 is a special case of the Kato & Jones

(2015) distribution, while that of Θ2 given Θ1 = θ1 does not seem to be a well-known dis-

tribution in general. For this model, M(Θ1|θ2) = atan2(q sin θ2, cos θ2 − λ) and R(Θ1|θ2) =

γ/(1 + λ2 − 2λ cos θ2)
1/2. Their counterparts for the conditional distribution of Θ2|Θ1 = θ1

are M(Θ2|θ1) = qθ1 and R(Θ2|θ1) = γ. Thus, as is also the case for Class 3, this class affords

‘nonlinear-heteroscedastic’ circular-circular regression for Θ1 as a function of Θ2, and linear-

homoscedastic circular-circular regression for Θ2 as a function of Θ1. On the contrary, Classes

1 and 2 provide models for only linear-homoscedastic circular-circular regression. Class 4 offers

nonlinear-heteroscedastic circular-circular regression for both conditionals.

3.6 Class 6: Diagonal and vertical lines

Here we consider a class of circulas defined by the Fourier coefficients

ϕ(m,n) = pϕ2(m,n) + (1− p)ϕ3(m,n), m ∈ Z+, n ∈ Z+ ∪ Z−, (20)
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where

ϕ2(m,n) =

{
γρm−1, n = −qm,
0, n ̸= −qm,

ϕ3(m,n) =

{
γρ|n|−1, m = 1, qn ≤ −1,

0, otherwise,
(21)

0 ≤ p, ρ < 1, q ∈ {−1, 1}, and 0 ≤ γ ≤ (1− ρ2)/2(1 + ρ− 2pρ). From (20) and (21), it can be

seen that this class of circulas arises as a two-component mixture of the previously considered

special cases of Classes 2 and 3, namely model (13) and model (15).

As a mixture, the shapes of the density contours are weighted combinations of those in

Figures S4 and S3, the value of p determining their relative weights. Figure S7 presents planar

contour plots of examples of this density when q = 1 and the two component circula densities are

weighted equally. Its mode and antimode are located at (θ1, θ2) = (0, 0) and (θ1, θ2) = (−π, 0),
respectively. As for both of its component models, γ = |ϕ(1,−q)| for this class too and ρR = qγ.

Once again, ρ is a shape parameter. Clearly, the conditional distributions of the mixture model

are mixtures of the conditional distributions of its two components.

An alternative representation of the parameter space of the circula density under consider-

ation is q ∈ {−1, 1}, 0 ≤ γ < 1,

p ∈

{
[0, 1], γ ≤ 1/2,[
(1 +

√
2γ − 1/γ)/2, 1

]
, γ > 1/2,

and max(0, α1 − α2) ≤ ρ ≤ α1 + α2, where α1 = γ(2p− 1) and α2 = (γ2(2p− 1)2 − 2γ + 1)1/2.

This representation enables us to determine the ranges of p and ρ for a fixed value of γ.

3.7 Class 7: Bidiagonal

Here we consider an alternative two-component mixture, this time of Class 2 and a shifted

version of Class 2 (both are special cases of the more general diagonal line structure explored

in Subsection S1.2 of the Supplementary Material). Its Fourier coefficients are

ϕ(m,n) = pϕ2(m,n) + (1− p)ϕE2(m,n), m ∈ Z+, n ∈ Z+ ∪ Z−, (22)

where ϕ2(m,n) is as in (21) and

ϕE2(m,n) =

{
γρm−1, n = −q(m+ 1),

0, otherwise.

This class of circulas has density

c(θ1, θ2) =
1

4π2

[
1 + 2γ

p{cos(θ1 − qθ2)− ρ}+ (1− p){cos(θ1 − 2qθ2)− ρ cos θ2}
1 + ρ2 − 2ρ cos(θ1 − qθ2)

]
,

− π ≤ θ1, θ2 < π. (23)

Here the ranges of the parameters are 0 ≤ p, ρ < 1 and

0 ≤ γ ≤


(1− ρ)/{2(1− 2p)}, 0 ≤ p < ρ/(1 + 2ρ),

(1− ρ2)pρ/{p2 + (1− 2p)ρ2}, ρ/(1 + 2ρ) ≤ p < ρ,

(1 + ρ)/2, ρ ≤ p < 1.

(24)
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Figure S8 provides a contour plot of the maximum possible value of γ as a function of ρ and p.

From that plot it can be seen that, for a fixed value of ρ, the maximum possible value of γ is

monotonically nondecreasing with respect to p.

Figure S9 presents planar contour plots for examples of density (23) when q = 1 and the

two components are weighted equally. Although a superficial visual inspection of its panel (a)

might suggest the contrary, all three circula densities portrayed are unimodal on the torus.

The mode of (23) is located at (θ1, θ2) = (0, 0), and its antimode(s) at (θ1, θ2) = (−π,−π) if

0 ≤ p < ρ/(1 + 2ρ), (θ1, θ2) = (g(α), α) and (θ1, θ2) = (g(−α),−α) if ρ/(1 + 2ρ) ≤ p < ρ, and

(θ1, θ2) = (−π, 0) if ρ < p < 1, where α = arccos[{p(1 − ρ2) − (1 − p)2ρ2}/{2(1 − p)pρ2}] and
g(α) = 2α− π/2− arccos(ρ sinα).

For this model, ρR = qpγ, with pγ — rather than γ alone — regulating the strength of the

dependence and q its direction.

3.8 Classes with reflected patterns of Fourier coefficients

Let {ϕ(m,n)}m,n∈Z denote the Fourier coefficients of a circula with density c(θ1, θ2). Then the

distribution with Fourier coefficients

ϕ∗(m,n) = ϕ(n,m), m, n ∈ Z, (25)

is also a circula, with density

c∗(θ1, θ2) = c(θ2, θ1), −π ≤ θ1, θ2 < π.

This fact can be used to obtain new classes of circulas from those previously discussed. When

the Fourier coefficients of such a circula are plotted as in Figure 1, the patterns they adopt are

reflections about the main diagonal of those for the original class. For example, if {ϕ(m,n)} are

the Fourier coefficients of a Class 3 circula, as in the top right panel of Figure 1, then the plot

of {ϕ∗(m,n)} has non-zero Fourier coefficients along the horizontal line with n = −q. Similarly,

the non-zero coefficients of ϕ∗(m,n) = ϕ(n,m) for Classes 5, 6 and 7 define patterns in the

form of a lower triangle, a combination of diagonal line and a horizontal line, and two diagonal

lines with n = −qm and n = −q(m − 1) (m ≥ 2), respectively. The patterns adopted by the

non-zero coefficients of Classes 1, 2 and 4 are unchanged by transformation (25).

Many properties of the transformed classes follow straightforwardly from those of the original

classes. For example, the planar contour plot of the density of a transformed circula is a

reflection about the θ1 = θ2 diagonal of that for the original circula. Also, the ranges of the

parameters of a transformed class are the same as those for the original class.

3.9 Class 8: Tridiagonal

We employ transformation (25) in the definition of our final class of circulas, which turns out

to play a major role in the application of Section 5.2: it is a special case of a wider family

defined through a mixture of a Class 2 and two shifted versions of Class 2 circulas. The Fourier

coefficients of the latter are given by

ϕ(m,n) = pϕ2(m,n) +
1− p

2
ϕE2(m,n) +

1− p

2
ϕE2(n,m), (26)
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where

ϕ2(m,n) =

{
γ1ρ

m−1
1 , n = −qm,

0, otherwise,
, ϕE2(m,n) =

{
γ2ρ

m−1
2 , n = −q(m+ 1),

0, otherwise,

q ∈ {−1, 1} and the parameters 0 ≤ γ1, γ2, ρ1, ρ2 < 1 and 0 ≤ p ≤ 1 satisfy conditions that are,

in general, not easily identified.

The density of the circula with Fourier coefficients (26) is given by

c(θ1, θ2) =
1

4π2

[
1 + 2pγ1

cos(θ1 − qθ2)− ρ1
1 + ρ21 − 2ρ1 cos(θ1 − qθ2)

+ (1− p)γ2
cos(θ1 − 2qθ2) + cos(θ2 − 2qθ1)− ρ2(cos θ1 + cos θ2)

1 + ρ22 − 2ρ2 cos(θ1 − qθ2)

]
,

− π ≤ θ1, θ2 < π. (27)

The mode of density (27) is (θ1, θ2) = (0, 0) since this is the mode of each component of

the mixture. Its antimodes are θ1 = qθ2 + π (−π ≤ θ2 < π) for p = 1 and (θ1, θ2) = (π, π) for

p = 0. For 0 < p < 1, there are, in general, no closed-form expressions for the antimodes, but

it can be shown that the minimum value of density (27) occurs at (θ1, θ2) = (θ,−qθ), (−θ, qθ)
for some θ.

The special case of model (27) employed in Section 5.2 is that with pγ1 = ρ1 = ρ22.

Reparametrizing, let ρ = ρ2 and γ = (1 − p)γ2/2. The density of this two-parameter spe-

cial case is given by

c(θ1, θ2; ρ, γ) =
1

4π2

[
1− ρ4

1 + ρ4 − 2ρ2 cos(θ1 − qθ2)

+ 2γ
cos(θ1 − 2qθ2) + cos(θ2 − 2qθ1)− ρ(cos θ1 + cos θ2)

1 + ρ2 − 2ρ cos(θ1 − qθ2)

]
, (28)

where 0 ≤ ρ < 1 and

0 ≤ γ ≤ γmax =
1− ρ4

4(ρ cos θ∗ − cos 3θ∗)

1 + ρ2 − 2ρ cos 2θ∗

1 + ρ4 − 2ρ2 cos 2θ∗
, (29)

the latter obtained by solving c(θ,−qθ; ρ, γmax) = 0 and dc(θ,−qθ; ρ, γmax)/dθ = 0. In (29),

θ∗ (∈ (0, π]) is a solution to the equation

sin θ∗(c0 + c1 cos 2θ
∗ + c2 cos

2 2θ∗ + c3 cos
3 2θ∗) = 0,

where c0 = −3+5ρ−3ρ2−3ρ3−7ρ4+ρ5+ρ6+ρ7, c1 = −6+2ρ+6ρ2−6ρ3+4ρ4−4ρ5−4ρ6, c2 =

2ρ(2+10ρ−6ρ2+12ρ3+2ρ4), c3 = −24ρ3, and θ∗ satisfies θ∗ = argmin0<θ≤πc(θ,−qθ; ρ, γmax(ρ, θ
∗)).

Note that θ∗ = π is a solution to this equation and the equation c0 + c1x+ c2x
2 + c3x

3 = 0 has

closed-form solutions. Numerical investigations indicate that, for ρ ∈ [0, 0.6), θ∗ = π and thus

γmax = (1 + ρ2)/{4(1 + ρ)}, (30)

and that, for ρ ∈ [0.6, 1),

γmax ≃ −0.0123 + 1.2986ρ− 1.9212ρ2 + 0.6350ρ3, (31)
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to close approximation. Figure S10 plots the relation between ρ and γmax obtained using

restriction (29). Equation (30) reproduces its upper curve, whilst its lower curve, for ρ ∈ [0.6, 1),

is visually indistinguishable from that obtained using Equation (31).

Figure S11 displays contour plots of density (28) for q = 1 and six combinations of (ρ, γ).

The parameter ρ controls the strength of dependence between θ1 and θ2 (for this version of

the model, ρR = qρ2), the number of modes and antimodes, and the shape of the density

around the main mode and antimode(s). For small values of ρ the density has multiple modes

and antimodes, whilst for large values of ρ it has a single mode and three antimodes. As γ

increases, the value of the density at (0, 0) increases, the value at (π, π) decreases and the

contours around the mode(s) become tighter.

4 Simulation and model fitting

In this section we consider simulation, parameter estimation and testing for independence and

goodness-of-fit, first for the circulas introduced in Section 3 and then for the bivariate circular

models with density (2) generated from them.

4.1 Circula models

To simulate a random vector from c(θ1, θ2), first simulate θA from the circular uniform distribu-

tion, where A is either 1 or 2, and then use it to simulate θB from the conditional distribution of

ΘB|θA where B = 3−A. Efficient algorithms for doing the latter may exist or it might be nec-

essary to apply the inverse probability integral transform, either using a closed-form expression

or numerically. See Kato & Jones (2015) for the relevant details for their model. Of course, A

can be chosen so that the distribution of ΘB|θA is the easier of the two conditional distributions

from which to simulate. Alternatively, vectors from c(θ1, θ2) can be simulated using a simple

acceptance-rejection approach based on uniform random simulation in [−π, π]2×[0, cmax], where

cmax denotes the maximum value of c.

Let {(θ1k, θ2k), k = 1, ..., n} denote an i.i.d. sample of random vectors from a circular density

c where n from here on denotes sample size. If, as will generally be the case in practice, the

distributional form of c is unknown, and n is moderate to large, an inspection of a scatterplot

of the data will usually be sufficient to identify q and can provide insight as to the form of the

underlying generating circula density. Also, a level plot of the absolute values of the empirical

Fourier coefficients, ϕ̃(r,−qs) = 1
n

∑n
k=1 e

i(rθ1k−qsθ2k), for r, s = 1, 2, ..., 6, say, can be inspected

for patterns, like those in Figure 1, indicative of the structure of the Fourier coefficients of

the underlying circula density. Level plots of this type are available in R’s lattice package

and are illustrated in Section 5. Note that computation of the empirical Fourier coefficients

is extremely fast. In practice, a range of potential c’s might be explored and the best fitting

model established using information criteria and goodness-of-fit testing (see below).

All of the circula densities in Section 3 have, by design, relatively simple closed-form ex-

pressions involving no computationally demanding normalizing constants. As a consequence,

their log-likelihood functions are easy to compute. However, maximum likelihood (ML) estima-

tion must invariably be conducted numerically, constrained optimization techniques generally

being required so as to respect the constraints on the parameters. We have made successful

use of R’s nlminb routine, which allows for box constraints, when performing ML estimation.

Method of moments (MM) estimation can be used to obtain potential starting values from
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which to begin the optimization process. For Class 5, for example, γ = ||ϕ(1,−1)| − |ϕ(1, 1)||,
q = sgn(|ϕ(1,−1)| − |ϕ(1, 1)|), ρ = |ϕ(2,−2q)|/γ and λ = |ϕ(1,−2q)|/γ. Moment estimates

of the parameters are calculated sequentially from these equations, substituting the ϕ(r, s) by

their sample analogues ϕ̃(r, s). For the calculation of confidence intervals and regions we favour

the use of profile log-likelihood methods based on standard asymptotic chi-squared theory for

likelihood ratios because they can be easily programmed to incorporate parameter constraints.

Confidence regions calculated by inverting the information matrix will generally not respect

such constraints.

Independence can be tested for using the permutation approach proposed in Section 3.3 of

Kato & Pewsey (2015) based on the likelihood ratio statistic L = 2(ℓ1−ℓ0), where ℓ1 denotes the
maximum of the log-likelihood for the chosen circula and ℓ0 = −2n log(2π) the log-likelihood of

the circular uniform random variables Θ1 and Θ2 under independence. Alternatively, at least for

the unimodal circulas considered here, for which ρR = 0 implies the circular uniform marginals

are independent, the more easily calculated moment estimate of ρR, ρ̃R = |ϕ̃(1,−1)| − |ϕ̃(1, 1)|,
can be used as the test statistic.

The distribution function of a circula can be represented as C(θ1, θ2) = C1|2(θ1|θ2) C2(θ2),

where C2 is the marginal distribution function of Θ2, i.e. the circular uniform distribution

function, and C1|2 is the conditional distribution function of Θ1|Θ2 = θ2. The latter is defined

as

C1|2(θ1|θ2) =
∫ θ1

0

c1|2(ϕ|θ2)dϕ, (32)

where c1|2 denotes the conditional density of Θ1|Θ2 = θ2, and, for simplicity, it is assumed

that θ1 = θ1 mod(2π) ∈ [0, 2π). Then U1 = C2(Θ2) = Θ2/2π and U2 = C1|2(Θ1|Θ2 = θ2) are

independent U(0, 1) random variables. As Θ1 and Θ2 are circular uniform random variables,

{(θ2k, 2πC1|2(θ1k|θ2k)), k = 1, ..., n} will be a uniformly distributed sample on the torus. The

same applies to {(θ1k, 2πC2|1(θ2k|θ1k)), k = 1, ..., n}. When the parameters of the conditional

distributions are estimated, we obtain the estimated conditional distribution functions Ĉ1|2 and

Ĉ2|1, and {(θ2k, 2πĈ1|2(θ1k|θ2k)), k = 1, ..., n} and {(θ1k, 2πĈ2|1(θ2k|θ1k)), k = 1, ..., n} will be

samples of pseudo-uniform vectors on the torus. In order to test the goodness-of-fit of the

fitted circula density, one can apply the obvious adaptation of the parametric bootstrap based

approach described in Section 3.2 of Pewsey & Kato (2016) to the two pseudo-uniform samples.

4.2 Bivariate circular models

The shapes of the bivariate circular densities obtained using density (2) depend heavily on

the reference points from which the marginal densities are integrated in the definitions of the

marginal distribution functions F1 and F2. Traditionally, the reference point used has been

the origin, 0. However, for this choice, changes in the location parameters of the marginal

distributions result in shape changes, not just location shifts, in the densities obtained using

Equation (2). To avoid such shape changes, we define Fj(θ), j = 1, 2, as

Fj(θ) =

∫ θ

ωj

fj(ψ)dψ, ωj ≤ ψ < ωj + 2π,

where ωj denotes the antimode of the circular density fj.

A feature of copulas often referred to as being appealing (Mikosch, 2006), which from an

inspection of (2) is clearly shared by circulas, is that the bivariate densities derived from them
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Figure 5: Planar contour plots of the bivariate circular density (2) when c is the circula density

depicted in Figure 4(b) and the marginal densities are the Kato & Jones (2015) marginal

densities depicted in the panels immediately below each of them. The values of the parameters

of the marginal Kato–Jones densities for Θ1 and Θ2, (µ1, γ1, ᾱ2,1, β̄2,1) and (µ2, γ2, ᾱ2,2, β̄2,2),

respectively, are: (d) (0, 0.3,−0.12, 0) and (0, 0.3, 0.12, 0); (e) (π/4, 0.58, 0.164, 0.164) and (π/4+

0.2, 0.4, 0.113, 0.113); (f) (0, 0.58, 0.164, 0.164) and (−π/4, 0.4, 0.113,−0.113). In panels (d)–(f)

the solid (dashed) curve represents the marginal density of Θ1 (Θ2).

can be decomposed into their marginal densities and a dependence regulating copula or circula

density. However, as the decomposition arises from the product of such densities, it is not

immediately obvious what shapes the resulting bivariate densities might adopt. As the panels

in the left-hand column of Figure 3 of Jones et al. (2015) illustrate, the shapes of bivariate

circular densities generated using the circula density of Class 2 can be far from what one might

expect even for the seemingly innocuous choice of von Mises marginal and binding densities.

Panels (a)–(c) of Figure 5 illustrate the flexibility of density (2) when the circula density in

Figure 4(b) is used together with the pairs of marginal Kato & Jones (2015) densities depicted in

panels (d)–(f) immediately below them. In Figure 5(d) both marginal densities are symmetric,

that for Θ1 (Θ2) being relatively flat-topped (peaked). Both densities in Figure 5(e) are skewed

in the same direction, whilst, in Figure 5(f), they are skewed in opposite directions.

Set A to whichever one of 1 and 2 proves more convenient again, and B = 3−A to the other.

A random vector from (2) can be simulated by first simulating θA from the marginal distribution

of ΘA with distribution function FA. The circular uniform random variate ψA = 2πFA(θA)

is then calculated and another circular uniform random variate, ψB = 2πFB(θB), simulated
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from cB|A(ψB|ψA). Finally, θB = F−1
B (ψB/(2π)). Alternatively, a simple acceptance-rejection

approach based directly on (2) might be employed.

We advocate the following ML approach to fitting densities of the form (2). If the distri-

butional forms of the marginal densities, f1 and f2, are not known or specified beforehand,

histograms and/or kernel density estimates of the data on each variable can provide insight

into potential underlying classes for them. Once potential distributional forms for f1 and f2
have been specified, their parameters are initially estimated separately using ML. Denoting the

marginal distribution functions corresponding to those parameter estimates by F̂ ∗
1 and F̂ ∗

2 , next

the ‘pseudo-sample’ {(2πF̂ ∗
1 (θ1k), 2πF̂

∗
2 (θ2k)), k = 1, ..., n} is computed. For moderate to large

n, a scatterplot of the pseudo-sample provides a visual aid in the identification of a potential

model for the circula density c. In addition, the inspection of a level plot of the absolute values

of the empirical Fourier coefficients for the pseudo-sample will usually provide insight into the

structure of the Fourier coefficients of the underlying circula density when the latter can be

assumed to be pointwise symmetric. We recommend the inspection of the absolute values of

the empirical Fourier coefficients because, unlike their real parts, they are invariant to location

shifts. The imaginary parts of the empirical Fourier coefficients are not invariant to such lo-

cation shifts either, and non-random patterns in level plots of them are indicative of potential

location misspecification arising from the estimation of the parameters of the marginal distribu-

tions alone. This is a consequence of the fact that if a random vector (Θ1,Θ2) follows a circula

with real Fourier coefficients ϕ(r, s) for any (r, s) then the random vector (Θ1+µ1,Θ2+µ2) has

Fourier coefficients ei(rµ1+sµ2)ϕ(r, s). In the next estimation step, ML estimation as described

in Section 4.1 is then applied to the pseudo-sample to obtain estimates of the parameters of

the chosen circula density c. Finally, the estimates from the previous two stages are used as

starting values in the maximization of the full log-likelihood function derived from (2).

The independence of Θ1 and Θ2 can be tested for using the permutation approach described

in Section 4.1, but now with ℓ0 denoting the maximum of the log-likelihood under independence,∑n
k=1 log f1(θ1k)+

∑n
k=1 log f2(θ2k). An alternative approach if c is one of our unimodal circulas

is to apply the permutation test based on ρ̃R, also described in Section 4.1, to the pseudo-

sample from c after maximization of the full log-likelihood function. We denote the latter by

{(2πF̂1(θ1k), 2πF̂2(θ2k)), k = 1, ..., n}.
Proceeding as in Section 4.1, {(2πF2(θ2k), 2πC1|2(2πF1(θ1k)|2πF2(θ2k))), k = 1, ..., n} and

{(2πF1(θ1k), 2πC2|1(2πF2(θ2k)|2πF1(θ1k))), k = 1, ..., n} are two uniformly distributed sam-

ples on the torus. When the parameters of (2) are estimated using the approach described

above, the samples {(2πF̂2(θ2k), 2πĈ1|2(2πF̂1(θ1k)|2πF̂2(θ2k))), k = 1, ..., n} and {(2πF̂1(θ1k),

2πĈ1|2(2πF̂2(θ2k)|2πF̂1(θ1k))), k = 1, ..., n} will be pseudo-uniformly distributed on the torus,

and the goodness-of-fit of the fitted circular density can be tested for using the parametric

bootstrap approach referred to at the end of Section 4.1.

5 Illustrative applications

In this section we present analyses of two toroidal datasets that illustrate the use of the pro-

posed Fourier series based circulas, the bivariate circular models derived from them and the

methodology described in Section 4.
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Table 1: Parameters, true parameter values used to simulate the data in Figure 6(a) (TV),

MM and ML estimates of the parameters of Kato & Jones (2015) distributions fitted to each

marginal data set (MMM and MLM), MM and ML estimates of the parameters of the Class

5 circula with q = 1 fitted to the values of {(2πF̂ ∗
1 (θ1k), 2πF̂

∗
2 (θ2k)), k = 1, ..., n} (MMC and

MLC), and ML estimates of the parameters of the full model with q = 1 used to simulate the

data (MLF).

Parameter TV MMM MLM MMC MLC MLF

µ1 0 −0.07 −0.07 −0.04

γ1 0.58 0.57 0.57 0.58

ᾱ2,1 0.16 0.13 0.14 0.15

β̄2,1 0.16 0.16 0.16 0.16

µ2 −0.79 −0.84 −0.84 −0.84

γ2 0.40 0.43 0.43 0.42

ᾱ2,2 0.11 0.14 0.13 0.14

β̄2,2 −0.11 −0.12 −0.13 −0.13

ρ 0.60 0.61 0.60 0.60

λ 0.40 0.41 0.42 0.42

γ 0.48 0.45 0.46 0.47

5.1 Simulated data

We first consider the random sample of size n = 2000 plotted in Figure 6(a) simulated from

the bivariate circular density depicted in Figure 5(c). In our analysis we assume that c, f1
and f2 are correctly specified as the Class 5 circula density and Kato & Jones (2015) marginal

densities, respectively, but, of course, that their parameters are unknown.

Proceeding as described in Section 4.2, the MM and ML estimates of the parameters of the

assumed Kato & Jones (2015) marginal densities are presented in the third and fourth columns

of Table 1.

Figure 6(b) provides a scatterplot of the pseudo-values {(2πF̂ ∗
1 (θ1k), 2πF̂

∗
2 (θ2k)), k = 1, ..., n}

calculated using the ML estimates of the parameters of the two marginal Kato & Jones (2015)

densities. Panels (c), (d) and (e) of the same figure are level plots of the real parts, imaginary

parts and absolute values, respectively, of the empirical Fourier coefficients for those pseudo-

values. The imaginary parts of the empirical Fourier coefficients, in panel (d), are all small

in absolute value and appear to manifest a random pattern. The patterns in panels (c) and

(e) are consistent with the triangular structure of the Fourier coefficients of the underlying

Class 5 circula represented graphically in the central panel of Figure 1. In practice, when the

distributional form of c is unknown, such plots provide insight into potential choices for c.

The fifth and sixth columns of Table 1 present the MM and ML estimates of the parameters

ρ, λ and γ of the Class 5 circula with q = 1 fitted to the values of {(2πF̂ ∗
1 (θ1k), 2πF̂

∗
2 (θ2k)), k =

1, ..., n}.
Finally, the ML estimates obtained for the Kato & Jones (2015) marginal densities and

the Class 5 circula were used as starting values in the maximization of the full log-likelihood.

The ML estimates obtained for the full model are denoted by MLF in the seventh column of

Table 1. Figure 6(f) provides a scatterplot of the values of {(2πF̂1(θ1k), 2πF̂2(θ2k)), k = 1, ..., n}
corresponding to those ML estimates. (It is very similar to Figure 6(b).) The value of ρ̃R for
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Figure 6: Planar scatterplots of: (a) a random sample of size n = 2000

simulated from the bivariate circular density depicted in Figure 5(c), {(θ1k, θ2k),
k = 1, . . . , n}; (b) {(2πF̂ ∗

1 (θ1k), 2πF̂
∗
2 (θ2k)), k = 1, ..., n}; (f) {(2πF̂1(θ1k), 2πF̂2(θ2k)),

k = 1, ..., n}; (g) {(2πF̂2(θ2k), 2πĈ1|2(2πF̂1(θ1k)|2πF̂2(θ2k))), k = 1, ..., n}; (h)

{(2πF̂1(θ1k), 2πĈ2|1(2πF̂2(θ2k)|2πF̂1(θ1k))), k = 1, ..., n}. Panels (c), (d) and (e) are level plots

of the real parts, imaginary parts and absolute values, respectively, of the empirical Fourier

coefficients of the pseudo-values in panel (b) for q = 1.
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Figure 7: (a) Planar scatterplot of the track versus heading measurements of n = 250 migrating

birds, {(θ1k, θ2k), k = 1, . . . , n}, (b) Histograms of the heading and track measurements with

ML fitted Kato & Jones (2015) densities superimposed.

those values is 0.451 and the p-value of the test of independence based on ρ̃R using 999 random

permutations of {(2πF̂1(θ1k), 2πF̂2(θ2k)), k = 1, ..., n} was 0.001. Hence, independence of Θ1

and Θ2 is emphatically rejected by the test.

Panels (g) and (h) of Figure 6 are scatterplots of {(2πF̂2(θ2k), 2πĈ1|2(2πF̂1(θ1k)|2πF̂2(θ2k))),

k = 1, ..., n} and {(2πF̂1(θ1k), 2πĈ2|1(2πF̂2(θ2k)|2πF̂1(θ1k))), k = 1, ..., n}, respectively. Apply-

ing the adaptation of the goodness-of-fit testing approach of Pewsey & Kato (2016) to them

using the Bingham type test statistic of Wellner (1979) and B = 99 parametric bootstrap sam-

ples, the value of the test statistic was 3.91 and the estimated p-value 0.23. Hence, there is no

significant evidence to reject the ML fitted model as the underlying distribution from which

the data were generated. From inspection of Table 1, the ML estimates of the parameters of

that model are very close to the true values used in the simulation of the data.

5.2 Bird migration data

Our second analysis is of a random subsample of size n = 250 drawn from a much larger

sample of 5916 heading and track measurements of migrating birds, the primary motivation for

the subsampling being to illustrate the effectiveness of our methodology for a relatively small-

sized data set. The data were collected using tracking radars located in the Negev Highlands

of southern Israel during April of 1992 and are reported in Liechti & Bruderer (1995). The

heading, θ1, of a bird is the direction of its body axis during flight, whereas the track, θ2, is its

resulting flight direction. Both measurements were recorded to the nearest degree in [0, 359].

Figure 7(a) presents a planar scatterplot of the data converted to radians in [−π, π), and Figure

7(b) histograms for the two marginal variables. The histograms are both close to unimodal and

perhaps somewhat skew, so we investigated the fit of the flexible Kato & Jones (2015) family of

unimodal circular distributions to them. The second and third columns of Table 2 contain the

MM and ML point estimates of the parameters for those fits. The densities for the ML fits are
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Table 2: Parameters, MM and ML estimates of the parameters of Kato & Jones (2015) distri-

butions fitted to the heading and track measurements (MMM and MLM), ML estimates of the

parameters of a Class 8 circula with q = 1 fitted to the values of {(2πF̂ ∗
1 (θ1k), 2πF̂

∗
2 (θ2k)), k =

1, ..., n} (MLC), and ML estimates of the parameters of the full model (MLF).

Parameter MMM MLM MLC MLF

µ1 −0.21 −0.21 −0.15

γ1 0.73 0.73 0.68

ᾱ2,1 0.49 0.48 0.38

β̄2,1 0.02 0.02 −0.06

µ2 0.01 0.01 0.07

γ2 0.65 0.65 0.60

ᾱ2,2 0.38 0.39 0.27

β̄2,2 −0.02 −0.03 −0.04

ρ 0.81 0.85

γ 0.11 0.09

superimposed upon the histograms in Figure 7(b) and appear to model the data rather well.

The pseudo-sample {(2πF̂ ∗
1 (θ1k), 2πF̂

∗
2 (θ2k)), k = 1, ..., n} is portrayed in Figure 8(a). We

immediately deduce from its structure that q = 1. Panels (b) and (c) of the same figure are level

plots of the imaginary parts and absolute values, respectively, of the empirical Fourier coeffi-

cients for that pseudo-sample. The larger imaginary parts form a diagonal pattern consistent

with the centre of the pseudo-values not being (0, 0), as the cross in Figure 8(a) corroborates.

The absolute values of the empirical Fourier coefficients in Figure 8(c) strongly suggest some

form of diagonal pattern, and consideration of the numerical values of the coefficients located

on the main diagonal and the two diagonals immediately above and below it suggested that the

Class 8 circula with density (28) might be a possible model for the underlying c. The fourth

column of Table 2 contains the ML point estimates of the parameters of that model fitted to

the pseudo-sample.

Using the ML estimates in the third and fourth columns of Table 2 as starting values, we

obtained the ML estimates of all 10 parameters of the full model presented in the fifth column of

Table 2. Figure 8(d) provides a scatterplot of the {(2πF̂1(θ1k), 2πF̂2(θ2k)), k = 1, ..., n} pseudo-

sample corresponding to that fit. Note how the centre of this pseudo-sample appears to be

closer to (0, 0). In Figure 8(e) the same pseudo-sample is superimposed on the density of the

Class 8 circula corresponding to the full model fit.

A scatterplot of the original data is superimposed on the ML fitted density for the full

model in Figure 8(f). The fitted model appears to describe the distribution of the majority

of the observations, situated around that part of the diagonal in the neighbourhood of the

origin, reasonably well. More formally, panels (g) and (h) of Figure 8 provide scatterplots

of {(2πF̂2(θ2k), 2πĈ1|2(2πF̂1(θ1k)|2πF̂2(θ2k))), k = 1, ..., n} and {(2πF̂1(θ1k), 2πĈ2|1(2πF̂2(θ2k)|
2πF̂1(θ1k))), k = 1, ..., n}, respectively. The distributions of the points within those scatterplots

appear to be reasonably consistent with toroidal uniformity. Applying the adaptation of the

goodness-of-fit testing approach of Pewsey & Kato (2016) to them using the Bingham type

test statistic of Wellner (1979) and B = 99 parametric bootstrap samples, the value of the test

statistic was 5.64 and the estimated p-value 0.06. At least at the 5% significance level, then,
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Figure 8: Planar scatterplots of: (a) {(2πF̂ ∗
1 (θ1k), 2πF̂

∗
2 (θ2k)), k = 1, ..., n}; (d)

{(2πF̂1(θ1k), 2πF̂2(θ2k)), k = 1, ..., n}; (e) {(2πF̂1(θ1k), 2πF̂2(θ2k)), k = 1, ..., n} su-

perimposed on the Class 8 density corresponding to the full ML solution; (f)

the original data {(θ1k, θ2k), k = 1, . . . , n} superimposed on the ML fitted density

for the full model; (g) {(2πF̂2(θ2k), 2πĈ1|2(2πF̂1(θ1k)|2πF̂2(θ2k))), k = 1, ..., n}; (h)

{(2πF̂1(θ1k), 2πĈ2|1(2πF̂2(θ2k)|2πF̂1(θ1k))), k = 1, ..., n}. The crosses in panels (a) and (d) iden-

tify (0, 0). Panels (b) and (c) are level plots of the imaginary parts and absolute values,

respectively, of the empirical Fourier coefficients of the pseudo-values in panel (a) for q = 1.
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there is no significant evidence to reject the ML fitted distribution as a potential model for the

data.

6 Discussion

As the many classes of circulas considered in Section 3 illustrate, the proposed general Fourier

series construction provides a means of generating circula densities with simple closed-form

expressions and wide-ranging distributional shapes. Moreover, when combined with the Kato

& Jones (2015) family of circular distributions through Equation (2) they provide highly flexible

models for bivariate circular data.

Stationary Markov models for circular time series can be defined from those models using

an analogous approach to that of Wehrly & Johnson (1980). The flexibility of the circula

models can be made even greater by allowing the Fourier series coefficients to be complex. The

main effect of such an extension is to skew the circula distributions in various ways. Also, in

principle, the advocated approach for bivariate circular data can be extended to produce d-

dimensional circulas using the multivariate analogue of Equation (4) and patterns of non-zero

Fourier coefficients distributed in d dimensions. Another possibility is, as mentioned in Jones

et al. (2015), to model multivariate circular data using the circular analogues of pair copulas.

Analogues of copulas on other compact Riemannian manifolds have been considered in Jupp

(2015).

The approach we advocate should not be confused with those of Pertsemlidis et al. (2005)

and Fernández-Durán (2007). Those authors make use of the Wehrly & Johnson (1980) cir-

cula combined with circular densities obtained from truncated Fourier series and nonnegative

truncated Fourier series, respectively. In principle, such nonparametric marginal circular den-

sities could be used together with the circulas proposed here to generate alternative models

for toroidal data. We prefer to combine our circulas with Kato & Jones (2015) circular densi-

ties because of their parametric flexibility, unimodality and ease of interpretation. Multimodal

toroidal data can be modelled using mixtures of the resulting bivariate circular models.

We stress again that our approach allows the use of level plots of the absolute values of

empirical Fourier coefficients as a highly successful model identification tool: such plots prove

to be more easily understood and used to suggest appropriate models than contour plots of

estimated copula densities. Our Fourier-based approach also opens up the possibility of devel-

oping a fully nonparametric approach to copula estimation based on doubly truncated bivariate

Fourier series, but this is beyond the scope of the current paper.

Alternative general approaches to obtaining bivariate circular distributions include wrapping

and projecting, as in Jammalamadaka & Sarma (1988) and Saw (1983), respectively. Unlike

the bivariate circular densities proposed here, those obtained using wrapping and projecting

generally suffer from having no closed-form expression or are highly convoluted.
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Appendix

Proof of Theorem 1

For m,n ∈ Z, we have

E
[
ei(mΘ1+nΘ2)

]
=

∫ π

−π

∫ π

−π

ei(mθ1+nθ2)
1

4π2

∞∑
r,s=−∞

ϕ(r, s)e−i(rθ1+sθ2)dθ1dθ2

=
1

4π2

∞∑
r,s=−∞

ϕ(r, s)

{(∫ π

−π

ei(m−r)θ1dθ1

)
×
(∫ π

−π

ei(n−s)θ2dθ2

)}
.

As ∫ π

−π

eitθdθ =

{
2π, t = 0,

0, t ∈ Z+ ∪ Z−,
(33)

it follows that

E
[
ei(mΘ1+nΘ2)

]
=

1

4π2
4π2ϕ(m,n) = ϕ(m,n).

Proof of Theorem 2

First we show that if ϕ(m,n) is given by (6), then the density (4) is a circula. The marginal

density f(θ1) of the distribution (4) can be expressed as

f(θ1) =

∫ π

−π

f(θ1, θ2)dθ2 =
1

4π2

∞∑
m,n=−∞

ϕ(m,n)e−imθ1

∫ π

−π

e−inθ2dθ2.

Then it follows from the assumption (6) and Equation (33) that

f(θ1) =
1

2π

∞∑
m=−∞

ϕ(m, 0)e−imθ1 =
1

2π
.

Similarly it can be seen that f(θ2) = 1/(2π). Therefore the density (4) is a circula.

Next we prove that if a density in family (4) is a circula, then ϕ(m,n) is of the form (6).

Assume that (Θ1,Θ2) has the density (4). Since the marginal of Θ1 is the circular uniform, it

follows from Theorem 1 that

ϕ(m, 0) = E(eimΘ1) =

{
1, m = 0,

0, m ̸= 0,
m ∈ Z.

In a similar manner, we can see that ϕ(0, n) is given by the second equation of (6).
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