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Summary

The self-controlled case series (SCCS) method is an alternative to study designs such as cohort

and case control methods and is used to investigate potential associations between the timing

of vaccine or other drug exposures and adverse events. It requires information only on cases,

individuals who have experienced the adverse event at least once, and automatically controls all

fixed confounding variables that could modify the true association between exposure and adverse

event. Time-varying confounders such as age, on the other hand, are not automatically controlled

and must be allowed for explicitly. The original SCCS method used step functions to represent

risk periods (windows of exposed time) and age groups. The SCCS method has been extended

by modelling only the age effect or only the time-varying exposure effect using splines while

representing the other by a piecewise constant step function. In these two extensions, there is

a need to pre-specify exposure risk periods or age groups a priori, but a poor choice of group

boundaries may lead to biased estimates. In this paper, we propose a non-parametric SCCS
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method in which both age and exposure effects are represented as linear combinations of cubic

M-splines at the same time. To avoid a numerical integration of the product of these two spline

functions in the likelihood function of the SCCS method we defined the first, second and third

integrals of I-splines based on the definition of integrals of M-splines. Simulation studies showed

that the new method performs well. This new method is applied to data on paediatric vaccines.

Key words: Integral of I-splines; M-splines; Self-controlled case series; Smooth risk functions; Splines.

1. Introduction

The self-controlled case series method is used to investigate potential associations between time

varying exposures to vaccines or other drugs and adverse health events (Farrington, 1995). It

yields estimates of relative incidence, that is, the incidence in exposure risk periods relative to all

other time over which cases are observed. The method uses information only from cases, individ-

uals who have experienced the event of interest at least once, and implicitly controls all measured

and unmeasured confounding variables that act multiplicatively on the hazard. However, time

varying confounders such as age are not automatically controlled and hence should be included in

the model. The standard case series method uses piecewise constant step functions to represent

both age and exposure effects. Poor choice of the a priori chosen age groups or exposure risk

periods in the standard method may result in biased estimates of exposure-related relative inci-

dences. Usually the choice of exposure risk periods is motivated by reference to previous studies

or hypotheses, by biologically plausible mechanisms or by expert opinion, but it is not uncommon

to face a situation in which there is little knowledge of the precise timing defining true exposure

risk periods. Recently Ghebremichael-Weldeselassie et al (2014) extended the SCCS method by

modeling the age effect using splines to avoid the limitations of the standard SCCS model. In

addition Ghebremichael-Weldeselassie et al (2015) used linear combinations of cubic M-splines
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(piecewise polynomials of degree three) to represent the exposure risk effect. However, in these

two extensions either age or exposure risk effects are represented by piecewise constant functions

requiring a priori choice of cut points. Therefore, in this paper we extend the SCCS method

further by modelling both age and exposure effects using splines to have a fully non-parametric

SCCS method. This extension is non-trivial as it involves integrals of spline products.

The paper is organized as follows; after some initial remarks in Section 2, the likelihood func-

tion of the spline-based SCCS method is derived in Section 3. In this section, we also describe and

define derivatives and integrals of M and I splines, and the integral of a product of two spline func-

tions. Section 4 presents the penalised log-likelihood function of the spline-based SCCS method

and discusses the selection of smoothing parameters. In Section 5, we evaluate the performance

of the new method using simulations. We apply the spline-based SCCS method to data on febrile

convulsion and MMR vaccine in Section 6 and follow this with final remarks in Section 7.

2. Modelling Age and Exposure Effects Using Splines

The use of regression splines in the context of the self-controlled case series method has shown

an improved performance compared to the use of step functions as presented in Ghebremichael-

Weldeselassie et al (2014) and Ghebremichael-Weldeselassie et al (2015). Among the motivations

for using regression splines based on M-splines in these papers were that the spline functions

give flexible and plausible shapes of age and exposure-related relative incidence functions and

avoid numerical integration of the integral in the denominator of the SCCS likelihood function.

This numerical integration is avoided because the integral of an M-spline is an I-spline, there-

fore the integral of a linear combination of M-splines can be expressed as a linear combination

of I-splines. Based on similar arguments, both age and exposure effects can be represented as

linear combinations of M-spline basis functions. In this paper, since age and exposure are to be

represented by linear combinations of M-splines at the same time, the denominator of the SCCS
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likelihood function will involve the integral of a product of two spline functions. This cannot be

represented by a linear combination of I-splines only, so the integration cannot be avoided in the

same way used by Ghebremichael-Weldeselassie et al (2014) and Ghebremichael-Weldeselassie et

al (2015). Therefore, based on the definition of the integral of an M-spline developed by Ramsay

(1988), we define first, second and third integrals of an I-spline to avoid numerical integration of

the product of two spline functions. In the following section we derive the likelihood function of

the SCCS method when both age and exposure effects are approximated by linear combinations

of M-spline basis functions.

3. Likelihood Function

To derive the likelihood function of the spline-based SCCS method, we begin with the general

SCCS likelihood function given in Farrington and Whitaker (2006). The likelihood is specified

over an observation period defined by age or calendar time boundaries (ai, bi] within which an

event has been observed and the full exposure history is known. Note that in this paper we take

the underlying time line as age, while in practice this can be replaced with calendar time. For

one exposure risk period, the likelihood is given as

L =

N∏
i=1

ni∏
j=1

ψ(tij) exp {xi(tij)β}∫ bi
ai
ψ(t) exp {xi(t)β} dt

(3.1)

where ai and bi are the start and end of the observation period for individual i, i = 1, 2, . . . , N ,

ni is number of events experienced by individual i within the observation period (ai, bi], tij is

age at the jth event of individual i, xi(t) is the exposure status of individual i at t, exp(β) is the

exposure-related relative incidence, and ψ(t) is the age-related relative incidence function.

Equation 3.1 can be generalized as follows by using time since start of exposure as an argument

for the exposure effect:

L =

N∏
i=1

ni∏
j=1

ψ(tij)ω(tij − ci)∫ bi
ai
ψ(t)ω(t− ci)dt

, (3.2)
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where ω(t − c) is the exposure-related relative incidence function which takes the value one if

the age at event is not between age at start of exposure (ci) and age at end of exposure (di).

In the standard SCCS method, ψ(t) and ω(t− c) are represented by step functions; in the semi-

parametric version of SCCS (Farrington and Whitaker, 2006), ψ(t) is left unspecified and ω(t−c)

is fitted as a step function; in Ghebremichael-Weldeselassie et al (2014), ψ(t) is approximated by

spline functions and ω(t−c) by a step function, and in Ghebremichael-Weldeselassie et al (2015),

ψ(t) is represented as a step function and ω(t− c) as a linear combination of M-spline functions.

In this paper, we approximate both ψ(t) and ω(t−c) as linear combinations of cubic M-spline

basis functions. M-splines, which are variants of B-splines, are piecewise polynomials connected

at points known as knots. Given a knot sequence k1 = k2 = · · · = kq < kq+1 < · · · < kq+s <

kq+s+1 = kq+s+2 = · · · = k2q+s, an M-spline of order q is defined as

Ml(t|q) =

{
q[(t−kl)Ml(t|q−1)+(kl+q−t)Ml+1(t|q−1)]

(q−1)(kl+q−kl)
, kl 6 t < kl+q

0, elsewhere,

with

Ml(t|1) =

{ 1
(kl+1−kl)

, kl 6 t < kl+1

0, elsewhere.

The integrals of M-splines were defined by Ramsay (1988) as I-splines. I-splines are piecewise

polynomials of order q + 1 obtained by integrating M-splines of order q and are thus defined for

kh 6 t < kh+1 as Il(t|q) =
∫ t

o
Ml(u|q)du, where the lower limit of the integral is the minimum

interior knot denoted by o.

Thus for the same sequence of interior knots used in defining M-splines, I-splines are defined

as

Il(t|q) =


0, l > h∑h

m=l(km+q+1 − km)Mm(t|q+1)
q+1 , h− q + 1 6 l 6 h

1 l < h− q + 1.

ψ(t) is defined between a = min{ai; i = 1, . . . , N} and b = max{bi; i = 1, . . . , N}, where N is the

total number of cases in the study. Since ψ(t) is a relative effect it has to be a positive function
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and to obtain such a function based on M-splines we constrain the coefficients to be non-negative

to give the following expression for ψ(t):

ψ(t) =

m1∑
l=1

g(αl)M1l(t) =

m1∑
l=1

α2
lM1l(t). (3.3)

The g(αl) are parameters used to determine the shape of ψ(t) and are constrained to be non-

negative by taking g(αl) = α2
l . M1l(t) is the lth M-spline basis function related to age, m1 is the

number of parameters or the number of M-spline basis functions which is equal to the sum of the

number of interior knots and the order of the basis functions.

Similarly, the exposure-related relative incidence function with non-negative coefficients is

defined between 0 and max{(di − ci); i = 1, . . . , N}, where ci and di are the start and end of age

at exposure respectively for individual i. When the exposure is a point exposure, e.g. a vaccine, a

nominal maximum risk period is defined which can be unbounded to the right. The nominal risk

period is a period within the observation period where the exposure-related relative incidence

can be different from 1; outside this period the exposure-related relative incidence function takes

the value 1. Therefore, it is defined as:

ω(t− c) =

{ ∑m2

l=1 β
2
lM2l(t− c), c < t 6 d

1, otherwise,
(3.4)

where m2 is the number of M-spline basis functions used to define the exposure-related relative

incidence function ω(t − c) and M2l(t − c) is the lth basis function related to exposure. The

knots which are used to define the M-splines related to the age effect and the exposure effect are

chosen to be equidistant including the arbitrary knots added below and above the minimum and

maximum values of the variable.

Now replacing ψ(t) and ω(t− c), in Equation (3.2), by the spline functions in Equations (3.3)

and (3.4) respectively gives the likelihood function for the spline-based SCCS as

l =

N∏
i=1

ni∏
j=1

(∑m1

l=1 α
2
lM1l(tij)

) (∑m2

l=1 β
2
lM2l(tij − ci)

)I(ci<tij6di)∫ bi
ai

(
∑m1

l=1 α
2
lM1l(t)) (

∑m2

l=1 β
2
lM2l(t− ci))

I(ci<t6di) dt
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and the log-likelihood function is

l =

N∑
i=1

ni∑
j=1

log

 (∑m1

l=1 α
2
lM1l(tij)

) (∑m2

l=1 β
2
lM2l(tij − ci)

)I(ci<tij6di)∫ bi
ai

(
∑m1

l=1 α
2
lM1l(t)) (

∑m2

l=1 β
2
lM2l(t− ci))

I(ci<t6di) dt

 . (3.5)

To further simplify the denominator of the log-likelihood function (3.5), to avoid numerical

integration, we will use integration by parts. This will involve derivatives and integrals of linear

combinations of M-spline functions and integrals of their integrals. Therefore, before we pro-

ceed with simplifying the log-likelihood function, we describe derivatives of M-splines and define

integrals of I-splines in the following subsections.

3.1 Derivatives of M-splines

The derivative of an M-spline of order q is given by (de Boor, 1978)

dMl(t|q)
dt

=
q

kl+q − kl
(Ml(t|(q − 1))−Ml+1(t|(q − 1))) .

In general, the jth derivative of an M-spline function of order q, Ml(t|q), is

djMl(t|q)
dtj

=
q

kl+q − kl

(
dj−1Ml(t|(q − 1))

dtj−1
− dj−1Ml+1(t|(q − 1))

dtj−1

)
,

and the jth derivative of a function which is a linear combination of M-spline basis functions,

f(t) =
∑m

l=1 αlMl(t|q) , can be given as

djf(t)

dtj
=

m∑
l=1

αl
djMl(t|q)

dtj
.

3.2 Integrals of I-splines

Based on the definition for the integral of an M-spline given by Ramsay (1988) and shown above

we define the integral of an I-spline. Let the integral of Il(t|q) be denoted by I1l (t|q) =
∫ t

o
Il(u|q)du.

Using the same sequence of interior knots employed to define the M-splines, for kh 6 t < kh+1

the integral of an I-spline, I1l (t|q), has three different expressions depending on the value of l. For
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l > h the value of an I-spline is zero so its indefinite integral will be a constant, and hence

I1l (t|q) =

∫ t

o

Il(u|q)du = 0.

For h− q + 1 6 l 6 h an I-spline, Il(t|q), is given by

Il(t|q) =

h∑
m=l

(km+q+1 − km)
Mm(t|q + 1)

q + 1

therefore its integral will be

I1l (t|q) =

∫ t

o

h∑
m=l

(km+q+1 − km)
Mm(u|q + 1)

q + 1
du

=

h∑
m=l

(km+q+1 − km)

q + 1

∫ t

o

Mm(u|q + 1)du.

∫ t

o
Mm(u|q + 1)du in the above expression is the integral of an M-spline of order q+ 1 that gives

another I-spline, Im(t|(q + 1)) =
∑h

n=m(kn+q+2 − kn)Mn(t|q+2)
q+2 for h− q 6 m 6 h, so

I1l (t|q) =

h∑
m=l

(km+q+1 − km)

q + 1

h∑
n=m

(kn+q+2 − kn)
Mn(t|q + 2)

q + 2
.

For l < h − q + 1, that is for any value of t > kl+q the value of Il(t|q) = 1. This is because

Ml(t|q) = 0 for all values of t > kl+q. Now the integral of Il(t|q) has two parts for t > kl+q, the

integral of the function up to kl+q and from kl+q to t. That is,

∫ kl+q

o

Il(u|q)du+

∫ t

kl+q

Il(u|q)du =

(
h∑

m=l

(km+q+1 − km)

q + 1

∫ kl+q

o

Mm(u|q + 1)du

)
+ (t− kl+q) .

Therefore, in summary the integral of an I-spline is given by

I1l (t|q) =


0, l > h∑h

m=l

(km+q+1−km)

q+1

∑h
n=m(kn+q+2 − kn)Mn(t|q+2)

q+2
, h− q + 1 6 l 6 h

t− kl+q +
∑h

m=l

(km+q+1−km)

q+1

∑h
n=m(kn+q+2 − kn)

Mn(kl+q|q+2)

q+2
, l < h− q + 1.

The second integral of an I-spline I2l (t|q) =
∫ t

o
I1l (u|q)du and the third integral I3l (t|q) =∫ t

o
I2l (u|q)du can be obtained in a similar way (see supplementary material).
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3.3 Integrating the Product of Two Spline Functions

Now going back to the log-likelihood function (3.5), since the exposure-related relative incidence

function, ω(t− c), takes the value 1 in the control periods, (ai, ci] and (di, bi], within the obser-

vation period, the denominator of the log-likelihood function can be rewritten as

∫ ci

ai

m1∑
l=1

α2
lM1l(t)dt+

∫ di

ci

(
m1∑
l=1

α2
lM1l(t)

)(
m2∑
l=1

β2
lM2l(t− ci)

)
dt+

∫ bi

di

m1∑
l=1

α2
lM1l(t)dt

Furthermore, the first and the last terms are integrals of only one function, the age-specific

relative incidence ψ(t), whereas the second term is the integral of a product of two spline functions.

Since the integral of an M-spline of order q is an I-spline of order q + 1, hence the integral of a

linear combination of M-splines can be expressed as a linear combination of I-splines. Therefore,

we replace the integrals in the first and third terms by linear combinations of I-spline basis

functions which leads to a denominator with the expression

m1∑
l=1

α2
l I1l(t)

∣∣ci
ai

+

∫ di

ci

(
m1∑
l=1

α2
lM1l(t)

)(
m2∑
l=1

β2
lM2l(t− ci)

)
dt+

m1∑
l=1

α2
l I1l(t)

∣∣bi
di

.

The I1l(t) are I-splines related to the age effect and I2l(t) will be used to denote I-splines

related to the exposure effect. The remaining part in the denominator of the log-likelihood func-

tion of the spline-based SCCS is in the risk period (ci, di] where the exposure-related relative

incidence can take a value different from 1. This part contains an integral of the product of the

two spline functions, ψ(t) and ω(t− c).

To evaluate this integral we use integration by parts as follows:

∫
ψ(t)ω(t− c)dt = ψ(t)

∫
ω(t− c)dt−

∫ (
ψ′(t)

∫
ω(t− c)dt

)
dt (3.6)

where ψ′(t) is the first derivative of ψ(t). Since ψ(t) and ω(t− c) are linear combinations of M-

spline basis functions,
∫
ω(t− c)dt can be expressed as a linear combination of I-splines denoted
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by IE(t− c)

IE(t− c) =

∫ t

c

ω(u− c)du =

∫ t

c

m2∑
l=1

β2
lM2l(u− c)du =

m2∑
l=1

β2
l I2l(t− c).

Letting the integral of the linear combination of I-splines IE(t− c) be denoted by I1E(t− c), the

integral of I1E(t− c) by I2E(t− c) and the integral of I2E(t− c) by I3E(t− c) that is,

I1E(t− c) =
∫
IE(t− c)dt, I2E(t− c) =

∫
I1E(t− c)dt and I3E(t− c) =

∫
I2E(t− c)dt,

the expression in Equation (3.6) becomes

∫
ψ(t)ω(t− c)dt = ψ(t)IE(t− c)−

∫
(ψ′(t)IE(t− c)) dt.

The last term of this equation is again an integral of a product of two non-constant functions.

We therefore apply integration by parts repeatedly until none of the terms is an integral of two

non-constant functions and get:

∫
ψ(t)ω(t− c)dt = ψ(t)IE(t− c)−

∫
(ψ′(t)IE(t− c)) dt

= ψ(t)IE(t− c)− ψ′(t)I1E(t− c) + ψ′′(t)I2E(t− c)− ψ′′′(t)I3E(t− c)

where ψ′(t), ψ′′(t) and ψ′′′(t) are the first, second and third derivatives of ψ(t) respectively. ψ′′′(t)

is a constant function because ψ(t) is a piecewise cubic function.

Then the log-likelihood function of the spline-based SCCS method, obtained by replacing

the appropriate expressions for the terms
∫ ci
ai
ψ(t)dt,

∫ di

ci
ψ(t)ω(t − c)dt and

∫ bi
di
ψ(t)dt in the

denominator, is

l =

N∑
i=1

ni∑
j=1

log

((∑m1

l=1 α
2
lM1l(tij)

) (∑m2

l=1 β
2
lM2l(tij − ci)

)I(ci<tij6di)

B

)
(3.7)

where
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B =

m1∑
l=1

α2
l I1l(t)

∣∣ci
ai

+

m1∑
l=1

α2
l I1l(t)

∣∣bi
di

+
(
ψ(t)IE(t− ci)− ψ′(t)I1E(t− ci) + ψ′′(t)I2E(t− ci)− ψ′′′(t)I3E(t− ci)

) ∣∣di

ci

and

I1E(t− c) =

m2∑
l=1

β2
l I

1
2l(t− c),

I2E(t− c) =

m2∑
l=1

β2
l I

2
2l(t− c),

I3E(t− c) =

m2∑
l=1

β2
l I

3
2l(t− c)

where I12l(t− c), I32l(t− c) and I32l(t− c) are the first, second and third integrals of the lth I-spline

(I2l(t− c)) related to exposure, respectively.

So far, the methodology developed in this paper has considered only one exposure period.

However, it can be applied to multiple exposures provided that the exposure risk periods do not

overlap. If multiple exposure risk periods, within an observation, do not overlap then the relative

incidence at each interval will be represented by the age-specific relative incidence function in the

control periods and the product of the age-specific relative incidence function and the relative

incidence function related to only one of the exposures. For example, if we have a second non-

overlapping exposure risk period (ei, fi], the numerator of the log-likelihood function (3.7) will be

multiplied by a spline function related to the new exposure,
(∑m3

l=1 γ
2
l M3l(tij − ei)

)I(ei<tij6fi)
.

The denominator then becomes
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B =

m1∑
l=1

α2
l I1l(t)

∣∣ci
ai

+

m1∑
l=1

α2
l I1l(t)

∣∣ei
di

+

m1∑
l=1

α2
l I1l(t)

∣∣bi
fi

+
(
ψ(t)IE(t− ci)− ψ′(t)I1E(t− ci) + ψ′′(t)I2E(t− ci)− ψ′′′(t)I3E(t− ci)

) ∣∣di

ci

+
(
ψ(t)IE2(t− ei)− ψ′(t)I1E2(t− ei) + ψ′′(t)I2E2(t− ei)− ψ′′′(t)I3E2(t− ei)

) ∣∣fi
ei

where IE2(t−ei), I1E2(t−ei), I2E2(t−ei) and I3E2(t−ei) are I-splines and their integrals all related

to the second exposure. Further exposures can be incorporated in a similar way.

4. Penalised Log-Likelihood

The numbers of knots, which determine the numbers of M-spline basis functions that make up

the age-specific and exposure-related relative incidence functions are chosen a priori. Maximising

the log-likelihood function (3.7) after choosing too large a number of knots over-fits the true

curves, while selecting too small a number of knots leads to under-fitting overly smoothed curves.

Therefore, to control the smoothness of the estimated functions we fix the numbers of knots at

higher values than are believed to be enough to represent the functions and introduce roughness

penalty terms to the log-likelihood function (3.7). Following Joly and Commenges (1999), we

choose a roughness measure to be the sum of the square norms of the second derivatives of the

age and exposure effect functions. This leads to the penalised log-likelihood function

pl = l(α,β)− λ1
∫ (m1∑

l=1

α2
lM

′′

1l(u)

)2

du− λ2
∫ (m2∑

l=1

β2
lM

′′

2l(u)

)2

du

= l(α,β)− λ1((α2)TA1α
2)− λ2((β2)TA2β

2) (4.8)

where α is a vector of parameters α1, . . . , αm1
, that define the age-specific relative incidence

function and α2 = α2
1, . . . , α

2
m1

, β2 = β2
1 , . . . , β

2
m2

are parameters related to the exposure effect,

A1 is an m1 × m1 matrix with (r, l) element
∫
M”

1r(u)M”
1l(u)du, A2 is an m2 × m2 matrix

with (r, l) element
∫
M”

2r(u)M”
2l(u)du, l(α,β) is the log-likelihood function (3.7). λ1 and λ2 are
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non-negative smoothing parameters that control the trade-off between the model fit and the

smoothness of the functions. The penalised log-likelihood function (4.8) is maximised, for fixed

λ1 and λ2 values, to estimate the parameters related to age and exposure effects.

4.1 Selection of Smoothing Parameters

We choose the smoothing parameters by maximizing approximate cross-validation scores, as

proposed by O’Sullivan (1988). λ1 is first chosen by ignoring the exposure effect then λ2 by

ignoring the age effect.

Denote the cross-validation scores by V1(λ1) and V2(λ2),

V1(λ1) =

N∑
i

li(α̂−i) (4.9)

V2(λ2) =

N∑
i

li(β̂−i) (4.10)

where α̂−i = α̂−i(λ1) is the maximum penalized likelihood estimator of α (with the exposure

effect excluded from the model) when individual i is removed, and li is the log likelihood contri-

bution of individual i. Following O’Sullivan (1988), V1(λ1) may be approximated by V̄1(λ1),

V̄1(λ1) = l(α̂)− tr([Ĥ1 − 2λ1S1]−1Ĥ1), (4.11)

where tr(X) is the trace of a matrix X, l(α̂) is the log-likelihood function in Equation (3.7) where

no exposure effect is included and evaluated at the maximum penalized likelihood estimates

(α̂). Ĥ1 = ∂2l(α)
∂α∂αT (α̂) is the log-likelihood part of the Hessian of the penalized log-likelihood

evaluated at the penalized maximum likelihood estimates α̂. The matrix S1 depends on the

expression for g(αl). If g(αl) = αl then S1 = A1, however here we take g(αl) = α2
l . Therefore,

S1 = 4
(
A1 ◦ (ααT )

)
+ 2(diag(A1α

2)) (Ghebremichael-Weldeselassie et al , 2014), where ◦ is the
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Hadamard product of matrices. Similarly, to choose the smoothing parameter of the exposure-

related relative incidence function, V2(λ2) can be approximated as

V̄2(λ2) = l(β̂)− tr([Ĥ2 − 2λ2S2]−1Ĥ2), (4.12)

where l(β̂) is the log-likelihood (3.7) taking no age effect into consideration, Ĥ2 = ∂2l(β)

∂β∂βT (β̂) is

the Hessian when no age effect is included and S2 = 4
(
A2 ◦ (ββT )

)
+ 2(diag(A2β

2)).

Then after choosing the smoothing parameters the log-likelihood function (4.8) is maximised

for fixed λ1 and λ2 values.

5. Simulation Study

To evaluate the performance of the new spline-based SCCS method and to compare it with the

extensions made to the standard SCCS method by Ghebremichael-Weldeselassie et al (2014)

and Ghebremichael-Weldeselassie et al (2015), we conducted a simulation study. The methods

developed by Ghebremichael-Weldeselassie et al (2014) and Ghebremichael-Weldeselassie et al

(2015) showed that the use of splines has a better performance in terms of efficiency than the

standard SCCS methods.

5.1 Design of the Simulation Study

The number of cases used in this simulation was 1000, each with ages at the start and end of

the observation period of 0 and 730 days respectively. For each case, the risk period between the

age at start of exposure ci and age at end of exposure di was taken as 49 days. The baseline

incidence is generated from a sine function, defined as λ0(t) ∝ 8(sin(0.01× t)) + 9 at age t. The

true age-related relative incidence function is presented in Panel a of Figure 1. Ages at start of

exposure ci, for i : 1, . . . , 1000, were sampled within (0,730] from an exponential density with

rate 0.003. The histogram of ci is shown in Panel b of Figure 1.
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Fig. 1. True age-related relative incidence function in Panel (a) and distribution of ages at start of
exposure in Panel (b), which were used to simulate data sets.

For the given age-related relative incidence function and distribution of age at exposure, we

investigated four scenarios for the exposure-related relative incidence function, ω(t − c). These

functions take the value one outside the risk period (ci, di], that is when time since start of

exposure t − c 6 0 or t − c > 49. Without loss of generality we consider each case to have

experienced only one event. The daily incidence rates within the observation period are evaluated

as the product of the age-related relative incidence and the exposure-related relative incidence.

An event day for each individual was generated from a multinomial distribution. The probability

of an event at a given day within the observation period was computed as the incidence rate for

that day divided by the sum of the rates for all the days within the observation period. For each

scenario 100 data sets were simulated.

The data sets generated were analyzed in three ways:

1. SCCS with smooth age effect and parametric exposure effect (step function) (Ghebremichael-

Weldeselassie et al , 2014),

2. SCCS with parametric age effect (step function) and spline-based exposure effect (Ghebremichael-
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Weldeselassie et al , 2015), and

3. the spline-based SCCS, the new method proposed in this paper.

For the first method, seven exposure groups of length seven days between 0 and 49 were chosen

to represent the exposure effect by a step function. For methods (1) and (3), to represent the

age effect with a spline function 9 interior knots between the minimum of ages at the start of

observation (zero) and the maximum of the ages at the end of observation periods (730) were

chosen. For the age effect, since exposure-related parameters are not duly sensitive to changes

in the smoothing parameter related to the age effect (Ghebremichael-Weldeselassie et al , 2014),

we chose a smoothing parameter for the first sample in a given scenario by the cross validation

method and used the same value for the remaining samples.

For the second method, where age is represented with a piecewise constant function, six age

groups with cut points at 0, 120, 240, 360, 480, 600 and 730 days were pre-specified. To represent

the exposure effect with a spline function in methods (2) and (3), a nominal risk period of 49 days

was chosen. 12 interior knots between zero and 49 were selected. The smoothing parameter of

the exposure was chosen by the cross validation method for all the samples in the two methods.

In addition, we fitted method (2), but with only three age groups with cut points at 0, 240, 480

and 730 days, to see how a change in age groups affects the results.

To compare the performance of the three methods in terms of estimating the age-specific

relative incidence and the exposure related relative incidence we used the mean of the integrated

squared errors (MISE) and the standard deviation of the integrated squared errors (SD). For the

age effect we constrained the cumulative relative incidence function to be one at the maximum

age to make the three methods comparable. The integrated squared error (ISE) for each sample

is defined as
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∫ 730

0

(Ψ(t)− Ψ̂(t))2dt,

where Ψ(t) is the true age-specific cumulative relative incidence constrained to be one at age

730 days and Ψ̂(t) is the estimated cumulative relative incidence. After fitting the models for

each sample we estimated the cumulative relative incidence at each day of age from 0 - 730 and

approximated the ISE values as:
730∑
t=0

(Ψ(t)− Ψ̂(t))2.

We then evaluated the MISE values as the mean of the ISE values of the 100 samples in each

scenario and the SD as the standard deviation of the ISE values. Similarly the ISE value for the

exposure-related relative incidence is defined as

∫ d

c

(ω(t− c)− ω̂(t− c))2dt,

where ω(t−c) is the true exposure-related relative incidence function, and ω̂(t−c) is the estimated

relative incidence function. The true exposure-related relative incidence functions used in the

simulations are presented in Figure 2.

5.2 Results of the Simulation Study

Table 1 presents the MISE and SD for estimating the age and exposure effects using the three

methods. The method proposed by Ghebremichael-Weldeselassie et al (2015) was fitted twice for

each generated data set using 6 and 3 age groups.

The results in Table 1 suggest that the new method performs well. In estimating the age-

specific relative incidence function the spline-based method has equivalent performance to method

(1) with smooth age effect and has better performance as compared to method (2).

In estimating the exposure-related relative incidence function, the fully spline-based method

showed the highest performance as compared to both methods (1) and (2). For method (2),
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Fig. 2. True exposure-related relative incidence functions.

Table 1. Mean integrated squared errors (MISE) and standard deviation (SD) obtained from the three
spline-based SCCS methods: SCCS with smooth age effect, SCCS with smooth exposure effect (twice with
6 and 3 age groups) and SCCS with both age and exposure effects represented by splines. Each simulated
data set was fitted by the three methods using a nominal risk period of 49 days. The true age-specific
relative incidence function was generated from a sine function.

Method 1 Method 2 Method 2 Method 3
6 age groups 3 age groups

Scenario Effects MISE (SD) MISE (SD) MISE (SD) MISE (SD)
Exposure 13.182 (6.581) 7.318 (4.792) 7.393 (4.835) 7.220 (4.433)

1 Age 0.110 (0.103) 0.181 (0.086) 1.466 (0.102) 0.110 (0.106)

Exposure 22.959 (10.249) 10.849 (12.996) 10.507 (12.678) 9.298 (7.188)
2 Age 0.117 (0.105) 0.202 (0.107) 1.483 (0.102) 0.123 (0.106)

Exposure 9.856 (5.597) 5.438 (6.466) 5.552 (6.597) 4.393 (4.372)
3 Age 0.107 (0.089) 0.187 (0.093) 1.476 (0.111) 0.109 (0.090)

Exposure 10.007 (4.882) 6.388 (8.451) 6.424 (8.207) 4.890 (6.328)
4 Age 0.126 (0.108) 0.204 (0.103) 1.490 (0.121) 0.129 ( 0.107)

when the age groups used in modelling the age effect are reduced to three, the performance of

the method reduces, which indicates that mis-specification of age groups may lead to a reduced

performance of this method. However, for scenario 2 surprisingly the performance increased when
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Fig. 3. Estimated relative incidence curves for scenario 1; the top panels show age-related relative incidence
curves and the bottom panels exposure-related relative incidence curves. In panels a are results from SCCS
with smooth age effect, panels b SCCS with smooth exposure effect and panels c SCCS with both age and
exposure represented with splines. The white solid lines in all panels represent the true functions.

the number of age groups is reduced. The spline-based method developed in this paper does not

have a limitation related to mis-specification of age and exposure groups.

The estimated age-related and exposure-related relative incidence functions along with their

true curves are presented in Figures 3, 4, 5 and 6 for scenarios 1, 2, 3 and 4 respectively (the

model with three age groups is not presented). The curves related to the age effect are plotted

by constraining the cumulative relative incidence at the maximum of the ages at the end of

observation period to be one.

The figures suggest that the spline-based method performs well in estimating both the age

and exposure-related relative incidence curves. In all cases the true functions are within the range

of the estimated curves and the estimated curves equally follow the trend of the true functions.

However there are some estimated exposure-related curves that over-fitted the true curve for

scenario 2, (Figure 4), where the true function is a constant.
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Fig. 4. Estimated relative incidence curves for scenario 2; the top panels show age-related relative incidence
curves and the bottom panels exposure-related relative incidence curves. In panels a are results from SCCS
with smooth age effect, panels b SCCS with smooth exposure effect and panels c SCCS with both age and
exposure represented with splines. The white solid lines in all panels represent the true functions.
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Fig. 5. Estimated relative incidence curves for scenario 3; the top panels show age-related relative incidence
curves and the bottom panels exposure-related relative incidence curves. In panels a are results from SCCS
with smooth age effect, panels b SCCS with smooth exposure effect and panels c SCCS with both age and
exposure represented with splines. The white solid lines in all panels represent the true functions.
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Fig. 6. Estimated relative incidence curves for scenario 4; the top panels show age-related relative incidence
curves and the bottom panels exposure-related relative incidence curves. In panels a are results from SCCS
with smooth age effect, panels b SCCS with smooth exposure effect and panels c SCCS with both age and
exposure represented with splines. The white solid lines in all panels represent the true functions.

6. Application

We illustrate the spline-based self-controlled case series method by applying it to data on measles,

mumps and rubella (MMR) vaccines and febrile convulsions. The data set includes 2, 389 cases

aged between 29 and 730 days with 3, 826 events. The data were collected in England and Wales

in the period 1991-1994. The objective was to investigate a potential association between febrile

convulsion and exposure to MMR vaccine. We used the spline-based SCCS method developed in

this paper where linear combinations of cubic M-splines are used to represent the age and exposure

effects. For the MMR vaccine related relative incidence function we chose a nominal risk period

of 50 days. We used 12 equally spaced interior knots between 0 and 50. The smoothing parameter

λ2 for the exposure effect was chosen by the cross validation method and was found to be 0.031.

For the age-related relative incidence, we used 12 interior knots between 29 and 730 and chose

the smoothing parameter using the cross validation method. The value selected was 1.07 × 109.

Then for the given values of the smoothing parameters, we maximised the spline-based SCCS
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Fig. 7. Relative incidence curves estimated by fitting spline-based SCCS. Panel (a) shows the estimated
constrained age-related relative incidence function Panel (b) represents estimated exposure-related relative
incidence curve (solid line) along with 95% confidence bands denoted by the dashed lines.

penalised log-likelihood function (4.8). The estimated age and exposure-related relative incidence

curves are presented in Figure 7.

Panel (a) of Figure 7 shows the estimated age-related relative incidence function, where the

cumulative age effect is constrained to have the value one at the maximum end of observation

period. Panel (b) of the figure shows the relative incidence curve post MMR vaccine. From the

figure, it can be seen that there is a significant increase in the risk of febrile convulsion from six

to 12 days after exposure to MMR vaccine. Five and 13 days after vaccination have a borderline

non-significant risk of febrile convulsion. There is no increased risk in other periods.

The dotted lines in Panel (b) of Figure 7 are approximate variability bands obtained by using

the Bayesian-like technique proposed by O’Sullivan (1988) to generate confidence bands. The

95% coverage probabilities of these confidence bands in the context of the SCCS method were

studied in a simulation study by Ghebremichael-Weldeselassie et al (2015).
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7. Final remarks

The method developed here combines the extensions to the standard SCCS method developed

by Ghebremichael-Weldeselassie et al (2014) and Ghebremichael-Weldeselassie et al (2015). In

Ghebremichael-Weldeselassie et al (2014), only the age effect was approximated by a linear com-

bination of M-spline basis functions and the exposure effect was represented by a piecewise con-

stant function. In Ghebremichael-Weldeselassie et al (2015), splines were used only to estimate

the exposure-related relative incidence function and age was taken into account based on step

functions. In this paper, the effects of both age and exposure in the SCCS model are represented

by linear combinations of M-spline basis functions simultaneously. The new method avoids the

mis-specification bias that may occur due to poor choice of age and\or exposure groups in the

standard and the previous spline based methods due to the use of step functions.

The denominator of the log-likelihood function of the new method includes the integral of a

product of two spline functions, namely the age-related and the exposure-related relative inci-

dence functions. Rather than using numerical integration techniques, we evaluated this integral

analytically using integration by parts. This required evaluation of the first, second and third

integrals of an I-spline function, based on the definition of the integral of an M-spline given by

Ramsay (1988).

A simulation study was conducted to evaluate the performance of the new method, spline-

based SCCS. It was found that the new method has better performance as compared to the ex-

tensions presented in Ghebremichael-Weldeselassie et al (2014) and Ghebremichael-Weldeselassie

et al (2015).

In other versions of the SCCS method either the age effect or the exposure risk period, or both,

are represented by step functions that can yield biased estimates if the a priori selected groups

are poorly chosen or mis-specified. The new method avoids this. When the exposure risk period

is represented by step functions greater accuracy can be achieved by defining several contiguous
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risk periods, likewise when the age effects are represented by step functions bias is minimised by

defining more age groups. The new approach offers greater efficiency in comparison when fewer

parameters need to be estimated overall. In addition it offers the advantage of representing the

exposure risk with biologically plausible shapes, graphical displays of which may be of particular

interest.

8. Supplementary Material

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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