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Abstract

In this partly expository article, I am concerned with some simple yet funda-

mental aspects of discrete distributions that are either uniform or have monotone

probability mass functions. In the univariate case, building on work of F.W. Steutel

published in 1988, I look at Khintchine’s theorem for discrete monotone distributions

in terms of mixtures of discrete uniform distributions, along with their ‘stronger’

subset of discrete α-monotone distributions. In the multivariate case, I develop a

new general family of multivariate discrete distributions with uniform marginal dis-

tributions associated with continuous copulas and consider families of multivariate

discrete distributions with monotone marginals associated with these.
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1 Introduction

In this partly expository article, I am concerned with some simple yet fundamental aspects

of distributions on N0 ≡ 0, 1, . . . , whose probability mass functions (p.m.f.’s) p are either

uniform or more generally monotone nonincreasing, together with certain extensions of

these distributions to N
d
0 ≡ N0 × · · · × N0, especially N

2
0, and subsets thereof. As a prime

example of a univariate distribution with a non-uniform monotone nonincreasing p.m.f. —

a ‘monotone p.m.f.’ for short — think of the geometric distribution.

The main points to be considered in this article, by section, are:

§2 Khintchine’s theorem for monotone distributions on N0, re-interpreted in terms of

mixtures of discrete uniform distributions, and a consequent variance inequality for

univariate discrete monotone distributions;

§3 a general family of multivariate discrete distributions with uniform marginal distri-

butions associated in an attractive yet novel way with continuous copulas;

§4 families of multivariate discrete distributions with monotone marginals associated

with the multivariate uniform distributions of Section 3;

§5 univariate α-monotone distributions on N0 which, for 0 < α ≤ 1, are a ‘stronger’

subset of monotone distributions. Originally introduced by Steutel (1988), I pursue

further interpretation and properties.

All mathematical manipulations made in this article have the major benefit of being

simple and direct.

As I go along, it will often be useful to point out analogies and connections with results

for continuous data which have uniform or monotone probability density functions (p.d.f.’s)

f on R
+, and their multivariate extensions.

2 Discrete Khintchine’s Theorem

Let f be a monotone p.d.f. on R
+. Then, the renowned Khintchine’s Theorem (Khintchine,

1938, Feller, 1971) says that X ∼ f can be written as a uniform scale mixture, either as
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X = UY , where U and Y are independent, U ∼ Uniform(0, 1) and Y ∼ g for some p.d.f.

g on R
+, or equivalently as X|Y = y ∼ Uniform(0, y), Y ∼ g. If f is differentiable, then

typically g(x) = −xf ′(x). (The distribution of Y is slightly different if f has support (0, b)

say, when b < ∞ and f(b) > 0; see Section 5.)

Implicit in Steutel’s (1988) paper on “discrete α-monotonicity” — of which, more in

Section 5 — is a corresponding result to Khintchine’s theorem in the discrete case. It is

framed in terms of binomial thinning, as first proposed by Steutel and van Harn (1979).

Let N ∼ p and M ∼ q on N0. For values of θ ∈ [0, 1], p is the binomially thinned version

of q if

N ≡ θ ◦ M ≡

M
∑

j=1

Bj (1)

where the sum is understood to be zero if M = 0. Here, B1, ..., BM are Bernoulli(θ) random

variables independent of each other and of M . (Note that if θ = 1, N = M and if θ = 0,

N = 0.) A useful equivalent way of expressing θ ◦ M is as

N |M = m ∼ Binomial(m, θ), M ∼ q, (2)

where Binomial(0, θ) is understood to be the degenerate distribution at zero.

The above is binomial thinning for fixed θ, an extension to which is to mix over a

distribution for its random variable version, Θ. So, consider the distribution of N = Θ ◦M

where Θ ∼ h on (0, 1), independently of M ∼ q. This distribution can be expressed as

N |M = m ∼ BinMix(m), M ∼ q, (3)

with the binomial mixture distribution ‘BinMix’ defined as follows: Nm ≡ Θ ◦ m ∼

BinMix(m) if

Nm|Θ = θ ∼ Binomial(m, θ), Θ ∼ h. (4)

Steutel’s (1988) observation is that taking Θ ∼ Uniform(0, 1) is equivalent to p being a

monotone p.m.f. on N0. I now note that in that case, where h(θ) = I(0 < θ < 1),

Θ ◦ M ∼ Uniform(0, 1, ..., m),
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that is, the binomial mixture distribution reduces to the discrete uniform distribution on

0, 1, ..., m. To see this, note that, for each x = 0, 1, ..., m,

∫ 1

0

(

m

x

)

θx(1 − θ)m−x dθ =

(

m

x

)

B(x + 1, m − x + 1) =
1

m + 1

(here, B(·, ·) is the beta function).

The discrete analogue of Khintchine’s theorem can therefore be given most simply —

and not unexpectedly given its continuous analogue — as a discrete uniform mixture, as

in Result 2.1.

Result 2.1

A p.m.f. p on N0 is monotone if and only if N ∼ p can be written as

N |M = m ∼ Uniform(0, 1, ..., m), M ∼ q,

where q is any p.m.f. on N0. In fact, p and q are related by

p(n) =

∞
∑

m=n

q(m)

m + 1
, q(m) = (m + 1) {p(m) − p(m + 1)} . (5)

Example 2.1

(a) Let N ∼ Geometric(p), 0 < p < 1, which has strictly decreasing p.m.f. In this case,

q(m) = (m + 1) p2(1 − p)m,

that is, M ∼ NegativeBinomial(2, p), which is the distribution of the sum of two

independent Geometric(p) random variables.

(b) Let N ∼ Poisson(µ) with 0 < µ ≤ 1. Then, p is monotone on N0, and Result 2.1

applies with

q(m) = (m + 1 − µ) p(m).

One of a number of ways of interpreting q is that it is the distribution of M0 + B

where B ∼ Bernoulli(µ), independent of M0 ∼ Poisson(µ).
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(c) Now let M ∼ Poisson(λ), λ > 0. Then, N has the strictly decreasing p.m.f.

p(n) =
e−λ

λ

∞
∑

j=n+1

λj

j!
=

1

λ
Γ(λ; n + 1)

where Γ(·; ·) is the incomplete gamma function ratio. From (6) below, E(N) = 1
2
λ

and V(N) = 1
2
λ + 1

12
λ2, so p is overdispersed as well as decreasing.

(d) The distribution of part (c) is a special case of taking q(m) = (m + 1) r(m + 1)/µr

where r is an arbitrary p.m.f. on N0 with finite mean µr. Then, p(n) = R(n)/µr

where R(n) = P (R > n) and R ∼ r, so p is clearly monotone.

(e) There is no distribution satisfying p = q. If there were, p must satisfy p(m+1)/p(m) =

m/(m+1), m = 0, 1, ..., and this was shown by L. Katz in the 1940s not to correspond

to a valid distribution (see Johnson, Kemp and Kotz, 2005, Section 2.3.1).

Either as a consequence of more general results for mixed binomial thinning or directly,

it is easy to show that

E(N) = E(M)/2, V(N) =
[

4V(M) + 2E(M) + {E(M)}2
]

/12. (6)

Since V(M) ≥ 0 and E(M) = 2E(N), the following variance-mean inequality arises.

Result 2.2

If N follows a monotone p.m.f. on N0, then

V(N) ≥ E(N) {1 + E(N)}/3, (7)

and any monotone distribution is overdispersed if E(N) > 2.

This inequality and observation arose in Jones and Marchand (2018) from a different

perspective. The inequality is the discrete analogue of the inequality V(X) ≥ {E(X)}2/3

of Johnson and Rogers (1951) in the continuous monotone case.
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3 Multivariate Discrete Uniform Distributions

Write c and C for the p.d.f. and cumulative distribution function (c.d.f.) of a copula on

(0, 1)d (e.g. Nelsen, 2006, Joe, 1997, 2014). This section and the next can be seen as an

investigation of a role for such multivariate continuous uniform distributions in providing

the dependence properties of certain multivariate discrete distributions, starting in this sec-

tion with multivariate discrete distributions with discrete uniform marginal distributions,

or multivariate discrete uniform distributions for shorter. Note that this is quite different

from the use of a (continuous) copula in conjunction with the discontinuous c.d.f.’s and

quantile functions of discrete marginals, a common practice but with a number of “dangers

and limitations”, as discussed by Genest and Nešlehová (2007). That said, a multivariate

discrete uniform distribution does not fulfil the same role for multivariate discrete distribu-

tions as a copula does for multivariate continuous distributions because discrete c.d.f.’s are

not distributed as discrete uniforms (on the other hand, continuous c.d.f.’s are distributed

as continuous uniforms).

The fact that a binomial distribution mixed over a continuous uniform distribution

for its probability parameter is itself a discrete uniform distribution suggests that a mul-

tivariate discrete uniform distribution can be defined as the distribution of N1, ..., Nd on

(0, 1, ..., m1) × · · · × (0, 1, ..., md) such that

Ni|Θi = θi ∼ Binomial(mi, θi) independently for i = 1, ..., d,

Θ(d) ≡ {Θ1, ..., Θd} ∼ c(θ1, ..., θd).

The joint p.m.f. of N1, ..., Nd is

pU(n1, ..., nd | m1, ..., md) =

{

d
∏

i=1

(

mi

ni

)

}

(8)

×

∫ 1

0

· · ·

∫ 1

0

{

d
∏

i=1

θni

i (1 − θi)
mi−ni

}

c(θ1, ..., θd) dθ1 ... dθd.

Its univariate marginal distributions are discrete uniform by construction because those of

the copula are continuous uniform.

Moments of this construction are readily available and, in particular, correlations are

determined by those of the copula as follows. Since Cov(Ni, Nj|Θ
(d) = θ(d)) = 0, it is the
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case that

Cov(Ni, Nj) = Cov{E(Ni|Θ
(d) = θ(d)), E(Nj |Θ

(d) = θ(d))}

= mimjCov(Θi, Θj). (9)

Also, since V(Ni) = mi(mi + 2)/12, V(Nj) = mj(mj + 2)/12, it is the case that

Corr(Ni, Nj) =
mimjCorr(Θi, Θj)/12

√

mi(mi + 2)mj(mj + 2)/12

=

√

mi

mi + 2

√

mj

mj + 2
Corr(Θi, Θj). (10)

So, while the correlation of Ni and Nj has the same sign as that of Θi and Θj, it reduces

to one-third that of the copula in the binary case, and increases, tending to a factor of one,

as the marginal supports grow larger. Note that Corr(Θi, Θj) is Spearman’s rho.

The existence of this simple relationship between discrete and continuous uniform cor-

relations is a strong reason for preferring the current construction to discretisations of the

copula, though the two can be very similar, as the following simple example shows.

Example 3.1

Consider the bivariate Farlie–Gumbel–Morgenstern (FGM) copula given by

C(u, v) = uv{1 + φ(1 − u)(1 − v)}, c(u, v) = 1 + φ(1 − 2u)(1 − 2v),

on 0 < u, v < 1 with −1 ≤ φ ≤ 1. Entering this into (8) when d = 2 gives

pFGM(n1, n2) =
1

(m1 + 1)(m2 + 1)

{

1 + φ
(2n1 − m1)(2n2 − m2)

(m1 + 2)(m2 + 2)

}

;

its correlation, from (10) and e.g. Example 2.4 of Joe (1997), is

√

m1

m1 + 2

√

m2

m2 + 2

φ

3
.

A natural discretisation of any C in the bivariate case is

p′(n1, n2) = C

(

n1 + 1

m1 + 1
,

n2 + 1

m2 + 1

)

+ C

(

n1

m1 + 1
,

n2

m2 + 1

)

− C

(

n1 + 1

m1 + 1
,

n2

m2 + 1

)

− C

(

n1

m1 + 1
,

n2 + 1

m2 + 1

)
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which turns out in the FGM case to equate to

p′FGM(n1, n2) =
1

(m1 + 1)(m2 + 1)

{

1 + φ
(2n1 − m1)(2n2 − m2)

(m1 + 1)(m2 + 1)

}

; (11)

this differs just a little from pFGM . The correlation associated with this model, calculated

directly from (11), is similar to that of pFGM , but a little larger; it is
√

m1(m1 + 2)

(m1 + 1)2

√

m2(m2 + 2)

(m2 + 1)2

φ

3
.

4 Multivariate Discrete Distributions with Monotone

Univariate Marginals

Combining Sections 2 and 3 further, it is now natural to develop discrete distributions on

N
d
0 with monotone univariate marginals as the distribution of N (d) ≡ {N1, ..., Nd} where

Ni|Mi = mi, Θi = θi ∼ Binomial(mi, θi) independently for i = 1, ..., d,

M (d) ≡ {M1, ..., Md} ∼ q(m1, ..., md),

Θ(d) ≡ {Θ1, ..., Θd} ∼ c(θ1, ..., θd),

where q is now an arbitrary p.m.f. on N
d
0 and M (d) is independent of Θ(d). This is, of course,

equivalent to mixing the multivariate discrete uniform distribution of Section 3 over q:

N |M (d) = {m1, ..., md} ∼ pU(n1, ..., nd|m1, ..., md), M (d) ∼ q(m1, ..., md).

The joint p.m.f. of N (d) is

pD(n1, ..., nd) =

∞
∑

m1=n1

· · ·

∞
∑

md=nd

q(m1, ..., md)

{

d
∏

i=1

(

mi

ni

)

}

(12)

×

∫ 1

0

· · ·

∫ 1

0

{

d
∏

i=1

θni

i (1 − θi)
mi−ni

}

c(θ1, ..., θd) dθ1 ... dθd.

Its univariate marginal distributions have the monotone p.m.f.’s of Result 2.1 by construc-

tion. Moments remain readily available and correlations are as follows. Using (6) and

(9),

Cov(Ni, Nj) = {Cov(Mi, Mj) + E(Mi)E(Mj)}Cov(Θi, Θj) + 1
4
Cov(Mi, Mj)
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so that

Corr(Ni, Nj) =
{Cov(Mi, Mj) + E(Mi)E(Mj)}Corr(Θi, Θj) + 3Cov(Mi, Mj)

√

{4V(Mi) + 2E(Mi) + {E(Mi)}2}{4V(Mj) + 2E(Mj) + {E(Mj)}2}
.

(13)

In the following two subsections, I will take a brief look at two major particular cases of

this in terms of the form of distribution for M . These distributions and their properties

are analogues of those given in Section 3 of Bryson and Johnson (1982) in the continuous

case when d = 2.

4.1 When M1, ..., Md are Independent

Let Mi ∼ qi, independently for i = 1, ..., d. This allows the dependence structure of pU to

depend only on that of C. The joint p.d.f. of N (d) is given by the obvious small change to

(12). The correlation of Ni and Nj, given by (13), reduces to

Corr(Ni, Nj) =

√

E(Mi)

4D(Mi) + E(Mi) + 2

√

E(Mj)

4D(Mj) + E(Mj) + 2
Corr(Θi, Θj)

where D(M) = V(M)/E(M) is the index of dispersion of M . Again, this has the same sign

as the correlation associated with the copula and is always a reduction of the absolute value

of the correlation compared with that of the copula, sometimes considerably so. This, in

turn, reduces to

rij ≡ Corr(Ni, Nj) =
E(M)

4D(M) + E(M) + 2
Corr(Θi, Θj) (14)

when Mi and Mj have the same distribution (that of M , say).

Example 4.1

Following Example 2.1(a), let qi(m) = (m + 1) p2
i (1 − pi)

m with E(Mi) = 2(1 − pi)/pi

and V(Mi) = 2(1− pi)/p
2
i , i = 1, ..., d. The corresponding family of multivariate geometric

distributions has joint p.m.f.

pG(n1, . . . , nd) =

{

d
∏

i=1

(ni + 1)p2
i (1 − pi)

ni

}

×

∫ 1

0

· · ·

∫ 1

0

[

d
∏

i=1

θni

i

{1 − (1 − p)(1 − θi)}ni+2

]

c(θ1, ..., θd) dθ1 ... dθd
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and correlations

Corr(Ni, Nj) =
1

3

√

(1 − pi)(1 − pj)Corr(Θi, Θj).

The correlations associated with this family of multivariate geometric distributions are

therefore limited to the range −1
3

< Corr(Ni, Nj) < 1
3
.

4.2 When M1, ..., Md are Equal

Let M1 = · · · = Md = M say, i = 1, ..., d, with M ∼ q0. This again allows the dependence

structure of pD to depend only on that of C, but with an opportunity for higher correla-

tions. This comes at the expense, however, of having to have identical univariate marginal

distributions. Let nmax = max(n1, ..., nd). The joint p.d.f. of N (d) is given by

pD(n1, ..., nd) =

∞
∑

m=nmax

q0(m)

{

d
∏

i=1

(

m

ni

)

}

×

∫ 1

0

· · ·

∫ 1

0

{

d
∏

i=1

θni

i (1 − θi)
m−ni

}

c(θ1, ..., θd) dθ1 ... dθd.

Its correlations are, from (13),

ρij ≡ Corr(Ni, Nj) =
[D(M) + E(M)]Corr(Θi, Θj) + 3D(M)

4D(M) + E(M) + 2
. (15)

Comparing (14) and (15), it is found that

ρij = rij +
D(M){Corr(Θi, Θj) + 3}

4D(M) + E(M) + 2
> rij.

Example 4.2

While in Sections 3 and 4.1 the independence copula with density c(θ1, ..., θd) =
∏d

i=1 I(0 < θi < 1) results in distributions with independent marginals, this is not the

case here because of the commonality of M . In fact, using the independence copula, the

joint p.m.f. of N (d) depends only on nmax and is given by

p(n1, ..., nd) =

∞
∑

m=nmax

q0(m)

(m + 1)d
.
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The corresponding correlations are all equal and positive, being determined by moments

of M :

Corr(Ni, Nj) =
3D(M)

4D(M) + E(M) + 2
.

If, in an extension to Example 2.1(d), for each d, q(m) = (m + 1)d r(m + 1)/µ
[d]
r where

r is a p.m.f. on N0 with finite raw d’th moment µ
[d]
r , then p(n1, ..., nd) = R(nmax)/µ

[d]
r . In

this case, E(M) = (µ
[d+1]
r /µ

[d]
r ) − 1,

V(M) =
µ

[d+2]
r − 2µ

[d+1]
r + µ

[d]
r

µ
[d]
r

−

(

µ
[d+1]
r − µ

[d]
r

µ
[d]
r

)2

and so

0 < Corr(Ni, Nj) =

3

{

µ
[d]
r µ

[d+2]
r −

(

µ
[d+1]
r

)2
}

4µ
[d]
r µ

[d+2]
r − 3

(

µ
[d+1]
r

)2

−
(

µ
[d]
r

)2 < 1.

Example 4.3

For a general copula and M ∼ NegativeBinomial(2, p), the corresponding family of

multivariate distributions with Geometric(p) marginals has correlations

Corr(Ni, Nj) =
1

2
+

(3 − 2p) Corr(Θi, Θj)

6
.

In this case too, 0 < Corr(Ni, Nj) < 1. In the case of the independence copula as in

Example 4.2, Corr(Ni, Nj) = 1/2.

5 Discrete α-Monotonicity

I now return to the univariate domain. To set the scene, I first describe the situation in the

continuous case. There, α-monotonicity was introduced by Olshen and Savage (1970) (see

also Dharmadhikari and Joag-Dev, 1988, and Bertin, Cuculescu and Theodorescu, 1997):

the distribution of a continuous random variable X is said to be α-monotone if and only

if the distribution of Xα is monotone. Then, X can be written in the form X = AαY say,

where Aα ∼ Beta(α, 1), independently of Y ∼ g on R
+, in a similar manner to Khintchine’s

theorem; equivalently, X = U1/αY where U ∼ Uniform(0, 1). Clearly α = 1 corresponds
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to ordinary monotonicity, and α-monotone distributions with α < 1 are also ordinary

monotone.

Providing an alternative view of an equivalent formulation of Abouammoh (1987/1988),

Steutel (1988) first put forward discrete α-monotonicity in the following manner: for

0 < α ≤ 1, N ∼ p is discrete α-monotone if N = Aα ◦ Mα = U1/α ◦ Mα, where

Aα ∼ Beta(α, 1), U ∼ Uniform(0, 1) and either of these is independent of Mα ∼ qα on

N0. The distribution of N can now be recognized, from Section 2, as being that of

N |Mα = mα ∼ BetaBinomial(mα, α, 1), Mα ∼ qα, (16)

where the BetaBinomial(mα, α, 1) distribution has p.m.f.

pBB1(x) =
α mα! Γ(x + α)

x! Γ(mα + α + 1)
(17)

on x = 0, 1, ..., mα. This is because now h(θ) = αθα−1I(0 < θ < 1) in (4) so that the

binomial mixture distribution becomes

α

∫ 1

0

(

mα

x

)

θx+α−1(1 − θ)mα−x dθ = α

(

mα

x

)

B(x + α, mα − x + 1) = pBB1(x).

(16) and (17) lead directly to confirmation of Steutel’s (1988) formula

p(n) = α
Γ(n + α)

n!

∞
∑

m=n

m! qα(m)

Γ(m + α + 1)
.

Steutel then observes that

(n + α)p(n) − (n + 1)p(n + 1) = αqα(n) (18)

from which it can be concluded that discrete α-monotonicity corresponds to p having the

simple property that

(n + α)p(n) ≥ (n + 1)p(n + 1).

I will now add that (18) can also be written

q(n) = (1 − α)p(n) + α qα(n) (19)

where q = q1 is as at (5) in Result 2.1. To corroborate and interpret (19), an alternative

way of expressing α-monotonicity arises from writing Aα = UV where U ∼ Uniform(0, 1)
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independently of some appropriate V . Now, Beta(α, 1) is a distribution on a finite interval

with non-zero density at its upper endpoint. As signposted at the start of Section 2, the

density of V is not −xf ′(x) if f has support (0, b) and f(b) > 0; in fact,

V ∼







Y with probability 1 − α,

b with probability α,

where Y ∼ −xf ′(x)/{1−f(b)} on (0, b). When b = 1 and h(x) = αxα−1 so that h(1) = α, it

turns out that −xh′(x)/{1−h(1)} = h(x). In the case of discrete α-monotonicity, it follows

that N = Aα ◦M = (UV ) ◦M = U ◦ (V ◦M) so that N = U ◦N0 where U ∼ Uniform(0, 1)

and

N0 ∼







N with probability 1 − α,

M with probability α,
(20)

which is immediately seen to be equivalent to (19).

By any of a number of routes, it can be shown that, for α-monotone distributions,

E(N) =
αE(Mα)

α + 1
, V(N) =

α [(α + 1)2
V(Mα) + (α + 1)E(Mα) + {E(Mα)}2]

(α + 1)2(α + 2)
. (21)

Since V(Mα) ≥ 0 and E(Mα) = (α + 1)E(N)/α, the following variance-mean inequality

ensues.

Result 5.1

If N follows an α-monotone p.m.f. on N0, then

V(N) ≥
E(N){α + E(N)}

α(α + 2)
.

This is essentially Theorem 3.1 of Abouammoh, Ali and Mashhour (1994) with a = 0 and

Corollary 5.3.21 of Bertin et al. (1997). An α-monotone distribution is thereby guaranteed

to be overdispersed if E(N) > α(α + 1). Of course, Result 5.1 reduces to Result 2.2 when

α = 1.
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Example 5.1

(a) N ∼ Geometric(p) is α-monotone if p ≥ 1 − α. Using (18), the corresponding p.m.f.

of Mα is

qα(m) = {(m + 1)p − (1 − α)}p(1 − p)m/α.

The dispersion inequality for α-monotone distributions confirms the overdispersion

of the geometric distribution — which actually holds for all 0 < p < 1 — when

p < 1/(α2 + α + 1), which tends to 1 as α → 0.

(b) Let N ∼ Poisson(µ) with 0 < µ ≤ α. Then, p is α-monotone on N0, and formula (18)

applies to give

qα(m) = (m + α − µ) p(m)/α.

Now, qα is the distribution of M0 + B where B ∼ Bernoulli(µ/α), independent of

M0 ∼ Poisson(µ).

(c) Both of the above examples and other monotone binomial and negative binomial dis-

tributions are covered by the Katz family, for which

(1 + n) p(n + 1) = (a + bn) p(n)

(Johnson et al., 2005, Section 2.3.1). In general, a > 0 and b < 1, but monotonicity

restricts the parameter ranges to 0 < a ≤ 1 and −1 < b < 1; α-monotonicity restricts

the parameters further to 0 < a ≤ α as well as −1 < b < 1.
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