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Summary

Copulas based on the t distribution are popular largely because of their asymptotic

tail dependence which, in the bivariate case, is the same in both tails and depends,

not very interpretably, on the joint action of two parameters. I introduce a simple

device that moves all of the asymptotic tail dependence into one tail, its strength fully

controlled by a single parameter. Some other properties of the resulting ‘orthant t

copulas’ and indications of how widely the ‘orthantising’ notion might be applied are

also included.

Some key words: Bivariate t distribution; Positive dependence; Symmetric multivari-

ate distribution; Tail dependence.

1. Introduction

One popular way of constructing bivariate copulas is to employ the copulas asso-

ciated with elliptically symmetric distributions, especially the bivariate normal or t

distributions (Song, 2000, Fang et al., 2002, Frahm et al., 2003, Demarta & McNeil,

2005, Genest et al., 2007, Danaher & Smith, 2011). Normal distributions, of course,

have relatively light tails, and this turns out to result in asymptotic tail independence;

t distributions, on the other hand, have heavy tails and consequently asymptotic tail

dependence (Embrechts et al., 2002, Frahm et al., 2003). This extremal dependence is

responsible for much of the particular interest in t copulas, which seem to be especially

popular in economics and finance.

I see two difficulties with the use of t copulas per se. The first is known (Balkema

et al., 2010). Figure 1(a) displays the Cauchy copula density when the correlation

coefficient ρ = 0.5; this is the t copula density when the degrees of freedom, ν,

is set equal to 1. Figure 1(b) shows the distribution based on the Cauchy copula

density with ρ = 0.5 when the marginals have been transformed to standard normal

distributions. The strong dependence in the copula interacts with the light tails of

the marginals to produce peculiarly shaped densities which would seem rarely if ever

to be good models for a data cloud.
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Figure 1: (a) The Cauchy copula density with ρ = 0.5; (b) the density with Cauchy

copula (ρ = 0.5) and normal marginals.

Secondly, in general, the asymptotic tail dependence of a t copula depends on the

values of both its parameters, ν and ρ (Embrechts et al., 2002, Frahm et al., 2003).

Their interpretation, in the bivariate t context, of seemingly measuring tail weight

and dependence separately is lost and their effects somehow funnelled into joint, and

not readily interpretable, control of dependence.

In this paper, I put forward an extremely simple idea which avoids such odd shaped

densities when marginals are light-tailed and allows the full range of asymptotic upper

tail dependence under the control of a single dependence parameter. Note the mention

of upper tail dependence, that is, dependence between coordinatewise maxima. If

tail dependence is required in both upper and lower tails of a distribution, I have

nothing to contribute in this paper. However, if, as I would suggest is usually the

case especially since one is often dealing with positive random variables, a prime

attribute to be captured is upper tail dependence, then this might be an attractive

way to deploy t-type copulas.

The construction of this paper is also applicable more widely to copulas based on

many symmetric underlying distributions, as will be seen. However, much emphasis

remains on the t case because of a particular interest in distributions with, possibly

strong, upper tail dependence. Sections 2 to 6 concentrate on the bivariate case, with

multivariate extension delayed until Section 7.
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2. ‘Orthantising’ symmetric copulas

The starting point is the copula of a doubly symmetric distribution, that is, a

copula with density c satisfying

c(u, v) = c(1 − u, v) = c(u, 1 − v) = c(1 − u, 1 − v), u, v ∈ (0, 1) × (0, 1).

These arise from transformation to uniform marginals of sign symmetric distributions

(Serfling, 2006) which have densities on R
2 satisfying

f(x, y) = f(−x, y) = f(x,−y) = f(−x,−y), x, y ∈ R
2.

Examples include those associated with spherically symmetric distributions in general,

such as the t distributions with ρ = 0 in particular. The corresponding Cauchy copula

is shown in Fig. 2(a).

Now define the orthant copula associated with c to have density

co(u, v) = c
(

1
2
(u + 1), 1

2
(v + 1)

)

, u, v ∈ (0, 1) × (0, 1). (1)

This copula density can be thought of as being an ‘orthantised’, that is, truncated to

the positive orthant and renormalised, version of c; equivalently, if {U, V } ∼ c, where

‘∼’ denotes ‘follows the distribution with density’, then {|2U−1|, |2V −1|} ∼ co. It is

also the copula density associated with the joint distribution of {|X|, |Y |} if X, Y ∼ f

where f is sign symmetric. As such, it is the bivariate copula analogue of ‘half

symmetric’ distributions on R. This construction is a very special, but apparently

unexplored, case of ‘threshold’ or ‘tail’ copulas (Juri & Wüthrich, 2003).

The orthant tν copula density, for example, is given by

cν(u, v) =
1

2π

(T−1
ν )′

(

1
2
(u + 1)

)

(T−1
ν )′

(

1
2
(v + 1)

)

[

1 + ν−1
{

(T−1
ν )2

(

1
2
(u + 1)

)

+ (T−1
ν )2

(

1
2
(v + 1)

)}](ν/2)+1
(2)

where T−1
ν is the quantile function of the tν distribution.

It is easy to show that if C is the copula distribution function associated with c,

then Co, the copula distribution function associated with co, is given by

Co(u, v) = 4C
(

1
2
(u + 1), 1

2
(v + 1)

)

− 1 − u − v, u, v ∈ (0, 1) × (0, 1). (3)

The orthant Cauchy copula density is shown in Fig. 2(b). Removal of the peaks

in the Cauchy copula density at (0, 1) and (1, 0) results in more realistic looking

densities, witness the version of Fig. 2(b) transformed to standard normal marginals

in Fig. 2(c), and compare with Fig. 1(b). Moreover, removal of the peak at (0, 0) has

resulted in the upper tail dependence being strengthened, in fact, doubled, as shown

in the next section.

3



(a) (b)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Figure 2: (a) The Cauchy copula density with ρ = 0; (b) the orthant Cauchy copula

density; (c) the density with orthant Cauchy copula and normal marginals.
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3. Tail dependence

The asymptotic upper tail dependence associated with copula C is

λU = lim
u→1

1 − 2u + C(u, u)

1 − u

(Joe, 1993, 1997). This takes values in [0, 1], 0 corresponding to asymptotically

independent upper tails, greater values to increasing amounts of asymptotic upper

tail dependence. The properties of t copulas with respect to asymptotic dependence

turn out to be shared with any copulas based on elliptical densities with regularly

varying tails (Schmidt, 2002, Hult & Lindskog 2002). In particular, Hult & Lindskog’s

(2002) Fig. 2 indicates that λU is bounded above by 1/2 for such copulas when ρ = 0.

Larger λU arises from ρ 6= 0 in addition to appropriate specification of ν. Properties

of orthant t copulas in this section also apply, without further mention, to orthant

copulas based on other elliptical densities with regularly varying tails.

Orthant t copulas do not suffer from any restriction on the value of λU , while

depending only on the single parameter ν. In fact, using (3),

λU,o = lim
u→1

1 − 2u + Co(u, u)

1 − u

= lim
u→1

4{C
(

1
2
(u + 1), 1

2
(u + 1)

)

− u}
1 − u

= lim
u→1

4{λU(1 − u)/2 + u − u}
1 − u

= 2λU .

Remarkably, it seems that orthantising the copula has had the effect of transferring

all the tail dependence that was apportioned equally between lower and upper tails

into the upper tail.

There are several ways of writing λU , and hence λU,o, for t copulas (Embrechts

et al., 2002, Hult & Lindskog, 2002, Schmidt, 2002, Frahm et al., 2003). One such

reduces when ρ = 0 to

λU,o = 4 T̄ν+1(
√

ν + 1)

where T̄ν is the survival function of the tν distribution. This quantity is plotted as

a function of ν in Fig. 3; see also Hult & Lindskog (2002, Fig. 2). It is confirmed

mathematically in the Appendix that λU,o is a decreasing function of ν > 0 with

limν→0 λU,o = 1 and limν→∞ λU,o = 0. Orthant t copulas therefore afford the full range

of asymptotic upper tail dependence, the amount of that dependence depending solely

and monotonically on the value of ν.

That all of the tail dependence in the t copula has gone into the upper tail de-

pendence of the orthant t copula is confirmed by considering the latter’s lower tail
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Figure 3: The asymptotic upper tail dependence λU,o of the orthant t copula plotted

against ν.

dependence. This is given (Joe, 1993, 1997) by

λL,o = lim
u→0

Co(u, u)

u
= lim

u→0

4C
(

1
2
(u + 1), 1

2
(u + 1)

)

− 1 − 2u

u

= lim
u→0

2u{C10
(

1
2
, 1

2

)

+ C01
(

1
2
, 1

2

)

− 1}
u

= 0.

Here, I have employed a Taylor series expansion and used the facts that, for a

doubly symmetric copula, C(1
2
, 1

2
) = 1

4
, C10(1

2
, 1

2
) = dC(u, v)/du|1

2
,
1
2

= 1
2

because

dC(u, v)/du = P (V ≤ v|U = u) where (U, V ) ∼ c, and similarly for C01(1
2
, 1

2
). That

is, the lower tails of the orthant t copula are asymptotically independent.

4. Positive dependence

Orthant t copulas are non-asymptotically positively dependent in the very strong

sense that their densities are totally positive of order 2 (TP2). This implies a num-

ber of further dependence properties which in turn ensure nonnegativity of scalar

dependence measures such as Pearson correlation, Kendall’s tau and Spearman’s rho

(Joe, 1997, Balakrishnan & Lai, 2009). An informative way to see that orthant

t copula densities cν(u, v) are TP2 is (Balakrishnan & Lai, 2009, p.170) to verify

the nonnegativity at all points u, v ∈ (0, 1) × (0, 1) of the local dependence func-

tion γν(u, v) = ∂2 log cν(u, v)/∂u∂v (Holland & Wang, 1987). Since γ changes with

marginal transformation in the same way as density functions do, nonnegativity of

γν follows from nonnegativity of the local dependence function of the orthantised

symmetric t distribution with density

fν(x, y) =
2

π

1

{1 + ν−1(x2 + y2)}(ν/2)+1
, x, y > 0;
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this affords a very simple calculation of γ.

The local dependence function for the entire bivariate symmetric Cauchy distri-

bution is shown in Fig. 2 of Jones (1996). There, as for all bivariate symmetric

t distributions, “Random variables X and Y are positively associated in the first

and third quadrants and negatively associated in the second and fourth” (Holland &

Wang, 1987). The symmetry of the positive and negative dependences is typically

averaged out by summary measures to produce zero overall dependence. See also

Abdous et al. (2005) for further observations on the relatively less strong positive de-

pendence of elliptical copulas in general. In this paper, by ‘orthantising’, we simply

retain only the, possibly considerable, positive association in the first orthant.

By the way, negative association in a t-type copula could be introduced by retain-

ing its second or fourth orthant, or equivalently by working with the distribution of

U and 1− V . However, this would destroy the positive dependence between maxima

that is an important feature of the orthant t copula.

5. Some explicit formulae

Explicit formulae are not, in general, available for t copulas. They are, however,

available for the two orthant t copulas associated with univariate t distributions with

explicit expressions for their quantile functions. These have 1 and 2 degrees of free-

dom, respectively. The orthant Cauchy, t1, copula — which can be obtained from

(2) or via formulae in, for example, Balakrishnan & Lai (2009, Section 9.9) — has

density

c1(u, v) =
π

2

1

cos2
(

uπ
2

)

cos2
(

v π
2

)

{1 + tan2
(

uπ
2

)

+ tan2
(

v π
2

)

}3/2

and distribution function

C1(u, v) =
2

π
tan−1







tan
(

uπ
2

)

tan
(

v π
2

)

√

1 + tan2
(

uπ
2

)

+ tan2
(

v π
2

)







;

the orthant t2 copula has density

c2(u, v) =
4

π

√

(1 − u2)(1 − v2)

(1 − u2v2)2

and distribution function

C2(u, v) =
2u

π
tan−1

(

v

√

1 − u2

1 − v2

)

+
v

π

[

π

2
− tan−1

{

1 + u2v2 − 2u2

2u
√

(1 − u2)(1 − v2)

}]

.
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Figure 4: Orthant t copula distribution functions when (a) ν = 1, (b) ν = 2. From

the left, contours are at 0.1(0.1)0.9.

The veracity of the formulae for C1 and C2 is best checked by confirming that

Ci(u, 1) = u, Ci(1, v) = v and ∂2Ci(u, v)/∂u∂v = ci(u, v), i = 1, 2; these copula

distribution functions are shown in Fig. 4, and c1 in Fig. 3(b). The asymptotic up-

per tail dependence functions for these two copulas can be explicitly checked to be

2 −
√

2 ≃ 0.586 and 1 − (2/π) ≃ 0.363 respectively, in accordance with Fig. 3.

In addition, of course, as ν → ∞ the orthant Gaussian copula is obtained, which

is the independence copula C(u, v) = uv.

6. Likelihood inference

Likelihood inference for parameters of distributions based on the orthant t copula

is very similar to likelihood inference for parameters of distributions based on the t

copula and existing software such as the fitCopula routine of the copula package

in R (Yan, 2007) can be used. Adaptations are that, from (1), the uniformised data

{Ui, Vi}, i = 1, ..., n, be transformed to {1
2
(Ui + 1), 1

2
(Vi + 1)}, i = 1, ..., n, and, in a

simplification, the correlation parameter ρ be set to zero, and not estimated. This

equivalence is because the fitting of the t copula with ρ = 0 — or any other doubly

symmetric copula — effectively works only with the values of {|2Ui − 1|, |2Vi − 1|},
i = 1, ..., n, anyway.

The theoretical work of Dakovic & Czado (2011) applies, in simplified form, for

ρ = 0, to orthant t copulas also. Note that since the parameter being estimated is

the tail dependence parameter, there is no need to give it special treatment as can

happen when a correlation parameter is also present (Klüppelberg et al., 2008).
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7. Multivariate extension

This paper has entirely concerned bivariate copulas so far. However, t copulas,

and more generally copulas based on spherically symmetric and other sign symmet-

ric distributions, are amongst the classes of copulas that have natural multivariate

extensions, and this translates to orthant t copulas too. In d dimensions, sign sym-

metry means that {q1X1, ..., qdXd} has the same distribution as {X1, ..., Xd} for all

qi ∈ {−1, 1}, i = 1, ..., d. Accordingly, the random variables U1, ..., Ud following the

associated copulas are such that {q1(2U1 − 1), ..., qd(2Ud − 1)} has the same distribu-

tion as {2U1 − 1, ..., 2Ud − 1}. In obvious extension of the bivariate case, the orthant

copula associated with such copulas is the distribution of {|2U1 − 1|, ..., |2Ud − 1|},
and is the copula associated with the distribution of {|X1|, ..., |Xd|}.

The survival function of the d-variate orthant copula, C̄o(u1, ..., ud) can then be

written in terms of the original d-dimensional sign-symmetric copula survival function

C̄(u1, ..., ud) as

C̄o(u1, ..., ud) = P (|2U1 − 1| > u1, ..., |2Ud − 1| > ud)

= P
(

2U1 − 1 > u1, ..., 2Ud − 1 > ud|U1 > 1
2
, ..., Ud > 1

2

)

= 2dP
(

U1 > 1
2
(u1 + 1), ..., Ud > 1

2
(ud + 1)

)

= 2dC̄
(

1
2
(u1 + 1), ..., 1

2
(ud + 1)

)

.

From this, densities are related through

co (u1, ..., ud) = c
(

1
2
(u1 + 1), ..., 1

2
(ud + 1)

)

and, in the bivariate case, relationship (3) between copula distribution functions also

follows immediately.

The bivariate advantage of removing any correlation parameter ρ in, for example,

the t case, now translates into the multivariate disadvantage that the orthant t copula

still only has a single parameter controlling dependence. Likelihood inference is, as

in Section 6, like that for the original copula but simpler. It would seem, however,

that a better way forward for multivariate quadrant t copulas would be to combine

bivariate quadrant t copulas using one of the notions of pair copulas (Kurowicka &

Cooke, 2006, Aas et al., 2009, Czado, 2010).
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Appendix

The asymptotic upper tail dependence of the orthant t copula can be written as

λU,o = 4 T̄ν+1(
√

ν + 1) =
4
∫∞√

ν+1
(1 + t2

ν+1
)−(ν+2)/2dt

2
∫∞
0

(1 + t2

ν+1
)−(ν+2)/2dt

=
2
∫∞
1

(1 + x2)−(ν+2)/2dx
∫∞
0

(1 + x2)−(ν+2)/2dx
.

The limiting values of λU,o as ν → ∞ and as ν → 0 are readily obtained from the first

and second of these ratio-of-integral representations, respectively. To see that λU,o is

decreasing, write D =
∫∞
0

(1 + x2)−(ν+2)/2dx so that

dλU,o

dν
=

1

D2

{
∫ ∞

1

1

(1 + x2)(ν+2)/2
dx

∫ ∞

0

log(1 + x2)

(1 + x2)(ν+2)/2
dx

−
∫ ∞

0

1

(1 + x2)(ν+2)/2
dx

∫ ∞

1

log(1 + x2)

(1 + x2)(ν+2)/2
dx

}

=
1

D2

{
∫ ∞

1

1

(1 + x2)(ν+2)/2
dx

∫ 1

0

log(1 + x2)

(1 + x2)(ν+2)/2
dx

−
∫ 1

0

1

(1 + x2)(ν+2)/2
dx

∫ ∞

1

log(1 + x2)

(1 + x2)(ν+2)/2
dx

}

<
log 2

D2

{
∫ ∞

1

1

(1 + x2)(ν+2)/2
dx

∫ 1

0

1

(1 + x2)(ν+2)/2
dx

−
∫ 1

0

1

(1 + x2)(ν+2)/2
dx

∫ ∞

1

1

(1 + x2)(ν+2)/2
dx

}

= 0.
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