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Summary

Two transformations are proposed that give orthogonal components with a one-

to-one correspondence between the original vectors and the components. The aim is

that each component should be close to the vector with which it is paired, orthog-

onality imposing a constraint. Applications of the transformations are diverse and

form new statistical methods. These include a unified approach to the identification

and diagnosis of collinearities, a method of setting prior weights for Bayesian model

averaging, and regression on orthogonal components. A means of calculating an

upper bound for a multivariate Chebyshev inequality is also obtained. One of the

transformations has the property that duplicating a vector, perhaps several times,

has no effect on the orthogonal components that correspond to non-duplicated vec-

tors. This transformation is determined using a new algorithm that also provides

the decomposition of a positive definite matrix in terms of a diagonal matrix and a

correlation matrix. The algorithm is shown to converge to a global optimum.

Some key words: Collinearity; Cos-max; Cos-square; Dilution; Matrix decompo-

sition; Multivariate Chebychev inequality; Orthogonal components; Prior weight;

Transformation; Variance inflation factor.



2

1. Introduction

This paper addresses the following range of practically important problems. De-

spite their apparent disparity, a single line of research links them.

Problem 1. Suppose a set of non-orthogonal vectors are to be adjusted by minimal

amounts so as to transform them to a set of orthonormal components. That is, from

a set of vectors x1, . . . , xm we want to construct components u1, . . . , um such that xi is

“close” to ui for each i, and U ′U is an identity matrix where U = (u1, . . . , um). Under

such a transformation the xi vectors retain their identities; xi is associated with ui.

This contrasts with principal components or factor analysis, where a component

typically relates to a number of x-variables and where an x-variable may relate to

more than one component. The first problem is to find an intuitively reasonable

definition of closeness or minimal adjustment between x1, . . . , xm and u1, . . . , um,

such that a usable, useful transformation results.

Problem 2. Variance inflation factors, VIFs, are commonly used to determine

if collinearities are present among a set of variables. If collinearities are detected,

then eigenvectors are generally examined in order to identify which variables cause

them. This is not a unified approach, as VIFs are not closely related to eigenvectors.

Hence, for example, a VIF is not linked to a particular eigenvector and there is

no direct relationship between the quantity used to identify a collinearity and the

quantity used to determine its cause. The second problem is to find quantities that

link to VIFs in close one-to-one relationships, and that are better than eigenvectors

at identifying which variables underly any large VIF.

Problem 3. In Bayesian model averaging, a prior weight must be given to each

of the models under consideration. The most common choice is a uniform prior in

which each model is given the same prior weight. However, it can be argued that

models that are very similar to each other should be given smaller weights. Quoting

Clyde (1999), ‘It is not clear that the independent uniform prior on the model space
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is sensible. . . . Suppose we start off with one [explanatory] variable, X1, and consider

two models ({1}, {1, X1}) where {1} represents the model with just an intercept.

Assign both models equal prior probabilities 0.5. Now consider adding a second

variable X2 that is highly correlated (or even perfectly correlated) with X1, with

possible models ({1}, {1, X1}, {1, X2}, {1, X1, X2}) and uniform prior probabilities

(0.25, 0.25, 0.25, 0.25). The total prior probability mass of the last three models is

0.75, while, if X2 is really a proxy for X1, the mass should be closer to 0.5, as these

three models are approximately equivalent (or exactly with perfect collinearity), and

should have the same weight as in the original model space with just X1.’

The need to reduce the prior weights given to similar models was first advocated by

George (1999), who referred to it as the dilution of prior weights. George also argued

that if a model is duplicated, then the prior weight formerly given to the model that

has been duplicated should be divided between that model and its duplicates, while

the prior probability given to other models should be unchanged. The third problem

we address is to find a weighting scheme that has these properties.

Problem 4. Suppose (Y1, . . . , Ym)′ is a random vector with mean 0′m and nonsin-

gular covariance matrix Σ = (σij). Olkin & Pratt (1958) consider the task of gener-

alizing the standard univariate Chebychev inequality so as to obtain an upper bound

for pr(|Yi| ≥ liσii, for some i), where l1, . . . , lm are specified positive constants. To

calculate the bound that they obtain, a positive-definite symmetric matrix V must

be decomposed as V = SDS, where D is a diagonal matrix and S is a correlation

matrix. Olkin & Pratt prove that this decomposition is unique, but note that it

cannot be performed by standard matrix operations. The problem of interest here

is to find an efficient method of performing the decomposition.

Problem 5. Bolla et al. (1998) considered the problem of maximizing
∑m

i=1u
′
iGui

under the constraint that U ′U is an identity matrix, where G1, . . . , Gm are symmetric,

positive-definite matrices, and U = (u1, . . . , um). They gave an algorithm to search
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for U and showed that the algorithm converges. However, while they believe the

algorithm converges to a global maximum, it has only been shown that the algorithm

converges to a local maximum. Here we consider a related problem where each Gi

equals xix
′
i for some vector xi. Thus the Gi are non-negative definite matrices,

rather than positive-definite. The algorithm of Bolla et al. may nevertheless be used

to search for U . We address the problem of showing that the algorithm converges to

a unique global maximum for this case.

Throughout we let (x1, . . . , xm) be a set of n × 1 vectors and assume that X ′X

is non-singular, where X = (x1, . . . , xm). For Problem 1 above, we consider two

measures of closeness between X and U = u1, . . . , um:

ψ =
m∑

i=1

x′iui (1)

and

φ =
m∑

i=1

(x′iui)
2. (2)

We devise transformations from X to U such that either ψ or φ is maximized subject

to the following conditions:

Condition 1. U = XA for some m×m matrix A.

Condition 2. U ′U = Im, the m×m identity matrix.

Condition 3. x′iui > 0 for i = 1, . . . , m.

Condition 1 implies that u1, . . . , um are obtained from a linear transformation of

(x1, . . . , xm). Condition 2 implies that u1, . . . , um are a set of standardized orthogonal

components. Condition 3 removes an obvious sign indeterminacy in maximizing φ.

When x1, . . . , xm are standardized vectors, so that x′ixi = 1 for each i, then xi

and ui each denote directional vectors in n-space and x′iui is the cosine of the angle

between them. The magnitude of the cosine gets larger as xi and ui become more co-

linear. Hence in maximizing ψ or φ we are seeking a set of orthonormal components

u1, . . . , um such that, for each i, ui is close to xi. If each x-vector is standardized, then
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x′iui is also the correlation between xi and ui, so the sum of these correlations or their

squares is also maximized. We will refer to the transformation from X to U as the

cos-max transformation when ψ is maximized, and as the cos-square transformation

when φ is maximized. In applications, the matrices that yield the transformations

are useful as well as the orthogonal components that are obtained.

Turning to Problem 2, variance inflation factors can be obtained from the matrix

A that satisfies U = XA in Condition 1. With both the cos-max and cos-square

transformations, if a′i is the ith row of A (i = 1, . . . , m), then the m VIFs for X are

a′1a1, . . . , a
′
mam. Moreover, if the ith VIF is large, then the variables that cause that

collinearity correspond to those components of ai that are large in magnitude. Thus,

the use of the ai unifies the tasks of determining collinearities and identifying their

causes.

The focus of this paper is the cos-square transformation because it has an unusual

invariance property. Suppose the set of x-vectors is increased by adding duplicates

of one of them. For definiteness, let xm+1, . . . , xm+k be duplicates of xm and sup-

pose that xm, xm+1, . . . , xm+k all differ very slightly, so that (X∗)′X∗ is positive-

definite, where X∗ = (x1, . . . , xm+k). Then the first m − 1 orthogonal components,

u1, . . . , um−1, are the same when the cos-square transformation is applied to the set of

vectors x1, . . . , xm as when it is applied to the augmented set of vectors x1, . . . , xm+k.

That is, under this transformation, duplicating a vector does not change the orthogo-

nal components associated with the other vectors. We call this property the duplicate

invariance property.

With the cos-square transformation, the ui components cannot be obtained from

a simple formula and they are calculated using an iterative algorithm. The algorithm

finds a diagonal matrix C such that QΛQ′ = CX ′XC is the spectral decomposition

of CX ′XC, and the diagonal elements of C2 and QΛ1/2Q′ are equal. For Bayesian

model averaging, Garthwaite & Mubwandakiwa (2010) consider allocating weights to

models on the basis of a correlation matrix, where highly correlated models receive
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smaller weight. If X ′X is equated to the correlation matrix for m models, then one

weighting scheme gives the ith model the prior weight,

pi = c2
i /

∑m
j=1c

2
j , (3)

where c1, . . . , cm are the diagonal elements C. This weighting scheme meets the

requirements of Problem 3. In particular, a consequence of the duplicate invariance

property is that duplicating a model does not change the weights given to other

models; the duplicated model simply shares its weight with its duplicates.

The algorithm used for the cos-square transformation also solves Problem 4, as it

yields the decomposition of a positive-definite matrix V as V = SDS, where D is

a diagonal matrix and S is a correlation matrix. To obtain this decomposition, the

algorithm is applied with X ′X set equal to V . When the algorithm converges, the

decomposition is obtained by putting D = C2 and S = C−1QΛ1/2Q′C−1. Olkin &

Pratt (1958) prove V has a unique decomposition as V = SDS. This leads to the

result that the algorithm converges to a unique global maximum, rather than a local

maximum, which solves Problem 5.

2. The transformations

Theorem 1 underpins both the cos-max and cos-square transformations. Proofs

of theorems are given in an appendix.

Theorem 1. Suppose C is a diagonal m × m matrix of positive constants

and let ci denote its (i, i) element (i = 1, . . . , m). Let QΛQ′ = CX ′XC be the

spectral decomposition of CX ′XC, where Λ is the diagonal matrix of eigenvalues

and Q is the matrix whose columns are the corresponding normalized eigenvectors.

If U = XA satisfies conditions 1–3, then tr(CX ′U) =
∑m

i=1 cix
′
iui is maximized when

A = CQΛ−1/2Q′.

To transform X to U using the cos-max transformation,
∑m

i=1 x′iui must be max-

imized under Conditions 1–3. Let Q1Λ1Q
′
1 be the spectral decomposition of X ′X.
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Applying Theorem 1 with C = Im gives

U = XQ1Λ
−1/2
1 Q′

1. (4)

Now Q1Λ
−1/2
1 Q′

1 is unique as it is the symmetric square-root of (X ′X)−1. Hence

equation (4) determines U uniquely.

The following iterative algorithm exploits Theorem 1 to find U for the cos-square

transformation, when
∑m

i=1(x
′
iui)

2 must be maximized under conditions 1–3. Step

6 of the algorithm gives U . The algorithm repeatedly maximizes
∑m

i=1 cix
′
iui until

convergence, at each iteration setting each ci equal to the most recent estimate of

x′iui.

Algorithm 1. Algorithm for the cos-square transformation.

Step 1. Set C1 equal to the m×m identity matrix and put i = 1.

Step 2. At the ith iteration, perform a spectral decomposition of CiX
′XCi, giving

CiX
′XCi = QiΛiQ

′
i, where Qi is an orthogonal matrix and Λi is a diagonal

matrix.

Step 3. Set Ci+1 equal to a diagonal matrix, with diagonal equal to the diagonal of

C−1
i QiΛ

1/2
i Q′

i.

Step 4. Repeat Steps 2 and 3 until convergence, when Ci+1 ≈ Ci.

Step 5. Set (u1, . . . , um) equal to XCiQiΛ
−1/2
i Q′

i.

The transformation matrix, A, is given by A = Q1Λ
−1/2
1 Q′

1 for the cos-max trans-

formation, where Q1Λ1Q
′
1 = X ′X, and by A = CQΛ−1/2Q′ for the cos-square trans-

formations, where QΛQ′ = CX ′XC. Both transformations are determined by X ′X,

rather than X. It will often be appropriate to centre X so that each of its rows has

a mean of zero and then base transformations on the covariance matrix X ′X or, if

standardization of x1, . . . , xm is required, the corresponding correlation matrix.
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The remainder of this section relates solely to the cos-square transformation, fo-

cusing on the algorithm that gives the transformation.

Remark 1. Suppose the diagonal elements of Ci are positive. Then the diagonal

elements of C−1
i QiΛ

1/2
i Q′

i are also positive and, from Step 3 of the algorithm, so

are those of Ci+1. Since C1 has positive diagonal elements, so do all Ci, which is a

condition in Theorem 1.

Remark 2. The rationale behind the algorithm is that in its ith iteration it finds

the matrix Ui that maximizes tr(CiX
′Ui) and meets Conditions 1–3. From Theorem

1, Ui = XAi where Ai = CiQiΛ
−1/2
i Q′

i. Thus X ′Ui = C−1
i CiX

′XCiQiΛ
−1/2
i Q′

i =

C−1
i QiΛiQ

′
iQiΛ

−1/2
i Q′

i = C−1
i QiΛ

1/2
i Q′

i. Hence, Step 3 sets the diagonal elements of

Ci+1 equal to the diagonal elements of X ′Ui.

Remark 3. At the ith iteration of the algorithm, U∗ is chosen to maximize

tr(CiX
′U∗) under the constraint that U∗ must satisfy Conditions 1–3. The max-

imum value of tr(CiX
′U∗) is tr(CiCi+1). The option of putting U∗ = Ui−1 was avail-

able, when tr(CiX
′U∗) would equal tr(CiCi−1). Hence tr(CiCi+1) ≥ tr(CiCi−1) =

tr(Ci−1Ci). Consequently, tr(CiCi+1) is monotonic non-decreasing as i increases.

Also, tr(CiCi+1) is bounded above as
∑m

i=1(x
′
iui)

2 is bounded above. Hence the

algorithm converges.

Remark 4. From the Cauchy-Schwarz inequality, tr(CiCi+1) ≤ {tr(CiCi) tr(Ci+1Ci+1)}1/2,

with equality only if Ci = Ci+1. Also, from the ith iteration of the algorithm,

tr(CiX
′U∗) has a maximum value of tr(CiCi+1), so tr(CiCi+1) ≥ tr(CiCi). Hence

tr(CiCi+1) ≤ tr(Ci+1Ci+1) and so, at convergence, Ci = Ci+1, as stated in Step 4.

Remark 5. We refer to C, Q and Λ as the cosine matrix, eigenvector matrix and

eigenvalue matrix of the cos-square transformation, where these are the values of

Ci, Qi and Λi at convergence. We also refer to 〈C,Q, Λ〉 as the matrix triple of the

transformation.
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Fig. 1. Diagonal elements of Ci in the first 10 iterations of the algorithm for a 30×30

matrix.

The algorithm converges quickly, near-convergence typically being obtained in

4–10 iterations, although convergence can be slowed by extreme collinearities in

x1, . . . , xm. The algorithm may be viewed as a fixed point iteration method that

takes C as its fixed point. While the aim is to estimate a matrix U with m2 unknown

elements, the diagonal matrix C has only m unknown elements, which benefits the

convergence rate.

To illustrate the speed of convergence, a 30×30 matrix X was constructed, each of

whose elements were randomly generated from a standard normal distribution. This

form of matrix was also used by Roberts & Rosenthal (2009), who note that X ′X is

almost singular, making it a challenging example. The algorithm was applied to X

and the values taken by the diagonal elements of Ci were recorded at each iteration

until convergence. Fig. 1 plots the path of each of these elements for the first ten

iterations. It can be seen that every element had virtually converged within six

iterations. Their values after six iterations were compared with their values after 50

iterations, and none had changed by more than 0.6%. Thus the algorithm converged

quickly with this moderately large, ill-conditioned matrix. Our experience indicates

that the speed of convergence is almost unaffected by the dimension of X.



10

It is obviously important that the algorithm should converge to a global maximum,

rather than a local maximum. The following lemma and theorem establish that this

is always the case. Their proofs are given in the appendix.

Lemma 1. Let 〈C,Q, Λ〉 be the matrix triple when the cos-square transformation is

applied to X. Put

D = C2 (5)

and

S = C−1QΛ1/2Q′C−1. (6)

Then D is a diagonal matrix, S is a correlation matrix and X ′X = SDS.

Theorem 2. At convergence of the algorithm for the cos-square transformation,

the matrix triple 〈C, Q, Λ〉 is unique, apart from the ordering of eigenvectors and

eigenvalues in Q and Λ. Also, the transformation matrix is unique and
∑m

j=1(x
′
juj)

2

attains its global maximum subject to conditions 1–3.

Any positive definite matrix may be equated to X ′X. It follows from Lemma 1

that the algorithm is a means of decomposing a positive definite matrix as SDS,

where D is a diagonal matrix and S is a correlation matrix. The simplicity of this

decomposition is attractive and an application where it proves useful is given later.

Equations (5) and (6) give D and S from 〈C, Q, Λ〉.
Bolla et al. (1998) gave an algorithm for choosing U = (u1, . . . , um) so as to

maximize
∑m

j=1 u′jGjuj under the constraint that U ′U = Im, where each Gj is a given

matrix. Their algorithm iteratively constructs a convergent sequence of matrices

U (1), U (2), . . .. Although Bolla et al. assume that each Gj is positive-definite, suppose

the Gj are allowed to be positive semi-definite and that Gj = xjx
′
j for j = 1, . . . , m.

Then it may be shown that their algorithm and our algorithm are equivalent, with

U (i+1) = XCi+1(Ci+1X
′XCi+1)

−1/2. The question of whether the algorithm of Bolla

et al. converges to a global maximum for any positive-definite G1, . . . , Gm has been

considered by Bolla et al. (1998), Bolla (2001) and Rapcsak (2001, 2002), but the
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result has not been proved. The work of Olkin & Pratt (1958) is key to proving

convergence to a global maximum for the case considered in Theorem 2, where each

Gj is of rank 1. By extending their work and adapting the proof of Theorem 2, it

may be possible to prove convergence to a global maximum for the case where the

Gj are positive-definite matrices.

3. The duplicate invariance property

Let {x1, . . . , xm} and {x1, . . . , xm+k} be two sets of vectors, so that the latter set is

formed from the former by adding xm+1, . . . , xm+k. In general, if some transformation

is applied separately to each set, then the transformed values of x1, . . . , xm may not

be the same in the two cases. Indeed, if the vectors are transformed to sets of

orthogonal vectors, then their transformed values will almost certainly differ in the

two cases, unless xm+1, . . . , xm+k are orthogonal to x1, . . . , xm. This is true of the

cos-max and cos-square transformations, and principal components, for example.

Suppose, however, that each of the vectors xm+1, . . . , xm+k is virtually a dupli-

cate of xm. Then, with some transformations, perhaps the transformed values of

x1, . . . , xm−1 will not depend on whether or not xm is duplicated. If that is true

when any single vector is duplicated, then we say that the transformation has the

duplicate invariance property. The following defines the property more precisely.

Definition 1. Let u1, . . . , um and u∗1, . . . , u
∗
m+k denote the first m orthonormal

components when a transformation is applied to 〈x1, . . . , xm〉 and 〈x1, . . . , xm+k〉,
respectively. Assume xm 6= xi for i = 1, . . . , m − 1. Then the transformation has

the duplicate invariance property if u∗i → ui for i = 1, . . . , m− 1, as xm+j → xm for

j = 1, . . . , k.

Almost any example shows that the cos-max transformation does not have the

duplicate invariance property. However, in an appendix we prove the following the-

orem, which shows that the cos-square transformation does have the property. The

theorem also gives related invariance properties. Applications in Section 4 illustrate
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benefits of the properties.

Theorem 3. Suppose that k duplicates xm+1, . . . , xm+k are added to the set of

vectors x1, . . . , xm. Let X∗ = (x1, . . . , xm+k). Assume the duplicates are virtually

identical to xm while (X∗)′X∗ is positive-definite. Let u1, . . . , um and u∗1, . . . , u
∗
m+k

denote the components resulting from the cos-square transformation when it is ap-

plied to 〈x1, . . . , xm〉 and 〈x1, . . . , xm+k〉, respectively. Also, let A and A∗ be the

corresponding transformation matrices. Then, as xm+j → xm for j = 1, . . . , k,

(i) u∗i → ui for i = 1, . . . , m− 1,

(ii)
∑m+k

i=1 (x′iu
∗
i )

2 → ∑m
i=1(x

′
iui)

2, and

(iii) if

A =


 A11 a12

a′21 a22


 and A∗ =


 A∗

11 A∗
12

A∗
21 A∗

22


 ,

where A11 and A∗
11 are (m− 1)× (m− 1) matrices, then A∗

11 → A11.

Remark 6. In principle, U ′U should equal the identity matrix. However, in

the limit xm = xm+1 = . . . = xm+k, so then U ′U = A′X ′XA is singular and the

components um+1, . . . , um+k become ill-defined. Hence, Theorem 3 describes limiting

behaviour when behaviour at the limit itself is ill-defined.

Remark 7. Suppose 〈C, Q, Λ〉 and 〈C∗, Q∗, Λ∗〉 are the matrix triples when the

cos-square transformation is applied to (x1, . . . , xm) and (x1, . . . , xm+k), respectively.

From (ii) of Theorem 3, tr(C∗C∗) → tr(C2) as xm+j → xm for j = 1, . . . , k. This

result is used in Section 4.4.

4. Methodological applications

The applications in this section mostly give new statistical methods. The work is

less developmental in the last application, on a multivariate Chebychev inequality,
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but a fifty-year-old problem is solved. The diversity of the applications suggests that

the transformations and their associated matrices should prove widely useful.

4.1. Detection and identification of collinearities

A well-recommended approach for detecting collinearities is to calculate a variance

inflation factor for each column of X (Farrar & Glauber, 1967). Suppose x1, . . . , xm

are observations of variables X1, . . . , Xm and let R2
i denote the multiple correlation

coefficient when Xi is regressed on the other X-variables. The variance inflation

factor for Xi, V IFi say, is defined to be

V IFi = (1−R2
i )
−1. (7)

V IFi will be large if Xi is involved in a collinearity. Hence, the VIF may be calculated

for each variable and used as a diagnostic to identify which variables are involved

in collinearities. However, the VIFs do not indicate the number of collinearities or

directly identify which variables are associated with each of them (Wetherill, 1986, p.

87). The most common approach for identifying which variables form a collinearity

is to determine the eigenvectors and eigenvalues of X ′X. Near-zero eigenvalues

suggest a collinearity and, in principle, the corresponding eigenvectors identify the

X-variables involved; components of the eigenvector that are large in magnitude

should correspond to those X-variables that are most influencing the collinearity.

As in Section 2, let U = XA, where A is the transformation matrix for either the

cos-max or cos-square transformation of X and U = (u1, . . . , um). Then A may be

used both as a diagnostic for determining the number of collinearities and as a means

of identifying the variables that contribute to each collinearity. The transformations

aim to find orthogonal vectors u1, . . . , um, where ui links strongly to xi but not to

the other x-vectors. Consequently, most of the off-diagonal elements of A will be

close to 0. However, if there is a collinearity between k of the X-variables, then some

of the x-vectors must be rotated substantially to transform them to k orthogonal
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u-vectors, causing some off-diagonal elements of A to be quite far from 0. Thus a

collinearity is indicated by large off-diagonal elements in A.

Suppose now that the X-variables had been standardized so that X ′X is a cor-

relation matrix. Then the transformation matrix also gives the values of the VIFs.

It is well known that V IFi equals the (i, i) diagonal element of (X ′X)−1 when X ′X

is a correlation matrix (e.g. Farrar & Glauber, 1967). For the cos-max transfor-

mation, A = Q1Λ
−1/2
1 Q′

1 with Q1Λ1Q
′
1 = X ′X, so AA′ = Q1Λ

−1
1 Q′

1 = (X ′X)−1.

For the cos-square transformation, A = CQΛ−1/2Q′ with QΛQ′ = CX ′XC, so

AA′ = C(QΛ−1Q′)C = C(C−1(X ′X)−1C−1)C = (X ′X)−1. In either case, if a′i is

the ith row of A, then

V IFi = a′iai. (8)

That is, the rows of A determine the VIFs, with large values of a′iai indicating a

collinearity. Moreover, most components of ai will typically be small; the values that

have greater magnitude cause V IFi to be large and correspond to the variables that

form the collinearity.

Examining A provides more information about collinearities than examining the

eigenvectors that correspond to small eigenvalues. This is partly because each vari-

able is associated with a separate row of A. Hence, if a collinearity involves three

variables, for example, then three rows of A provide information about it. With

eigenvectors, in contrast, a collinearity may relate to just one eigenvector. In ad-

dition, an eigenvector may combine two collinearities. For instance, if there is a

collinearity between X1 and X2, and a second collinearity between X3 and X4, then

an eigenvector may suggest that a collinearity involves X1, X2, X3 and X4. These

points are illustrated in the following example.

The example concerns data on 180 pitprops cut from Corsican pine (Jeffers, 1967).

The data have been widely analyzed, most commonly in the context of principal

components analysis, where components are formed from 13 physical variables. Table

1 gives the sample correlation matrix for these variables, X1, . . . , X13. There are quite



15

strong correlations between X1 and X2, between X3 and X4, and between X6 and

X7, as well as a number of moderate correlations. When X ′X is set equal to this

correlation matrix, the transformation matrix is given for the cos-max transformation

in Table 2 and for the cos-square transformation in Table 3. Values above 0.5 are

given in bold-face type. The last columns in the two tables give the VIF for each

variable; eg. 13.71 is the VIF for X2 and equals a′2a2. These columns are identical, of

course, but other values in the two tables are also very similar to each other, so that

the two transformations yield the same qualitative inferences. A VIF value above 10

is often treated as indicative of a collinearity (Neter, 1983, p. 392) and these values

are also given in bold-face in the tables. On this basis, both transformations indicate

that there is a collinearity between X1 and X2, and another between X3 and X4.

From the components of a3, a4 and a5, there is a suggestion in the tables that the

latter collinearity also involves X5; from practical considerations that is plausible, as

X4 and X5 are the specific gravity of a pitprop before and after being oven-dried,

while X3 is the initial moisture content of the prop. X7 also has a VIF above 10. It

seems to be moderately collinear with X6 and, to a lesser extent, X10.

[Tables 1, 2 and 3 about here]

In comparison, eigenvalues and eigenvectors provide more limited information

about collinearities. The smallest three eigenvalues for the pitprop data are 0.05,

0.04 and 0.04, and the next smallest is 0.19. Hence there appear to be three

collinearities. The eigenvectors corresponding to the three smallest eigenvalues are:

(−0.00,−0.05, 0.12,−0.02, 0.01,−0.54, 0.76, 0.03,−0.05,−0.32,−0.05, 0.05, 0.04),

(0.39, −0.41, 0.53,−0.59, 0.20, 0.08,−0.04,−0.05, 0.05, 0.06, 0.00, 0.00, 0.01) and

(−0.57, 0.58, 00.41,−0.38, 0.12, 0.06, 0.00, 0.02,−0.06, 0.00,−0.01, 0.00,−0.01).

The first of these eigenvectors suggests a collinearity between X6 and X7 and,

perhaps, X10. This concurs with one of the VIF findings from the cos-max and

cos-square transformations. The other two eigenvectors both suggest a collinearity

that involves X1, X2, X3 and X4. However, in contrast to the VIF analyses from
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Tables 2 and 3, the eigenvectors do not suggest that there is one collinearity between

X1 and X2 and another between X3 and X4.

4.2. Bayesian prior weights and other weighting schemes

The application that motivated the present work arises in Bayesian model aver-

aging. Suppose we have models M1, . . . , Mm and that pi is the prior probability, or

prior weight, that Mi is the true model. Suppose also that we have data D and

fi(D |Mi) is the likelihood of the data if Mi is true. Then in forming a Bayesian

weighted model average, the posterior weight given to Mi is

wi =
pi fi(D |Mi)∑m

j=1 pj fj(D |Mj)
, (9)

for i = 1, . . . , m. As this formula shows, the influence of the prior probabilities

p1, . . . , pm do not dissipate as data are gathered, but instead have a multiplicative

effect on the wi. Hence, these prior probabilities should be chosen with care.

In practice, the most common choice for the pi is to set each of them equal to

1/m. However, this does not seem the best choice if some models are very similar

to each other while other models are quite distinct. In regression, for example, if a

small subset of the explanatory variables are believed important, then many models

might be constructed by combining that subset of variables with two or three of

the other explanatory variables. Then giving the same prior probability to each

model would strongly favour the subset of variables believed important. Instead,

the probabilities given to models that are similar should be reduced because of that

similarity. Otherwise too little probability may be placed “. . . on good, but unique

models, as a consequence of massing excess probability on large sets of bad, but

similar models” (Chipman et al., 2001, p. 79).

Garthwaite & Mubwandarikwa (2010) suggest using the cos-square transforma-

tion to choose prior probabilities. Let M1, . . . ,Mm form the set of models to which

prior probabilities must be assigned. They suppose an m×m correlation matrix R

is determined that reflects the similarity between models. For example, R might be
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formed from the correlations between predictions given by the models at a range of

design points. The matrix triple 〈C,Q, Λ〉 is determined for the cos-square trans-

formation with X ′X set equal to R. If c1, . . . , cm are the diagonal of C, then Mi is

given the prior probability pi = c2
i /

∑m
j=1c

2
j . This is called the cos-square weighting

scheme and it assigns smaller prior probabilities to models that are correlated more

highly with other models. As an illustration, suppose five models M1, . . . ,M5 have

the following correlation matrix:

M1 1 0.9 0.8 0.7 0.6

M2 0.9 1 0.7 0.6 0.5

M3 0.8 0.7 1 0.5 0.4

M4 0.7 0.6 0.5 1 0.3

M5 0.6 0.5 0.4 0.3 1

M1 M2 M3 M4 M5

(10)

Then the prior probabilities given to these models are 0.10, 0.19, 0.22, 0.24 and

0.25, respectively. Thus M1 receives the lowest prior probability, M5 the highest,

and the full order is M1,M2,M3,M4,M5. Ranking the models by the strength of

their correlations gives precisely the reverse ordering, with M5 having the lowest

correlations and M1 the highest.

A related issue concerns how prior probabilities should be revised if the set of

models is augmented by adding models that are virtually identical to a model already

in the set. George (2010), Clyde (1999), and Chipman et al. (2001) argue that

the prior probabilities given to the models that have not been duplicated should

be unchanged. The remaining probability, which was formerly allocated to just the

duplicated model, should be divided between that model and its duplicates. Methods

of allocating weights that meet this requirement are said to have the strong dilution

property (Garthwaite & Mubwandarikwa, 2010).

The desirability of this property is illustrated in the following example, given by
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George (1999). Suppose a regression problem initially involves two uncorrelated pre-

dictors X1 and X2. These yield three regression models {X1}, {X2} and {X1, X2}.
A new predictor variable is introduced, X3, and this variable is very highly corre-

lated with X2, but not with X1. It is argued that the probability allocated to {X1}
should be unchanged when X3 is introduced as a potential predictor, whereas the

probability allocated to {X2} and {X1, X2} should be ‘diluted’ across all the new

models containing X3. George (1999, p. 176) writes, ‘X3 has not really added any

new models to the mix. Instead, models containing X3 are merely equivalent sub-

stitutes for the corresponding models containing X2. Introducing X3 has essentially

resulted in relabelling a set of equivalent models. The probability of such a set should

not increase as a result of this relabelling, and it is dilution that prevents this from

happening.’

The following useful result about dilution is almost immediate from Theorem 3.

It is proved in the appendix.

Corollary 3.1. The cos-square weighting scheme has the strong dilution prop-

erty.

To illustrate the result, suppose a model M6 is added to the models whose corre-

lation matrix is given in (10). If M6 were virtually identical to M5, then the prior

probabilities given to M1, . . . , M4 would be unchanged, while the probability of 0.25

previously given to M5 would be divided between M5 and M6.

The cos-square transformation is also useful for forming weighted averages in con-

texts other than choosing Bayesian prior weights. For example, suppose a variety of

different measurements is made on each of a set of objects and a univariate similarity

measure is to be constructed from both these measurements and, perhaps, functions

of these measures that are thought to be useful, such as ratios, products and linear

combinations. There may well be high correlations between some quantities and it

seems sensible to take these correlations into account in forming a similarity mea-



19

sure. The cos-square transformation would yield suitable weights based just on the

correlation structure, though the weights would generally need to be adjusted to

reflect other factors.

The cos-max transformation has not been considered in this section because it does

not appear to lead to any weighting scheme that has the strong dilution property.

4.3. Regression and design

In multiple regression, there is a preference for explanatory variables that are or-

thogonal. Methods such as principal component regression, latent root regression and

partial least squares are advocated not only for their dimension reduction properties,

but also because they give orthogonal components. An obvious advantage of orthog-

onal explanatory variables is that the relationship between each explanatory variable

and the dependent variable is not affected by which other explanatory variables are

included in the model. For example, forward stepwise regression and backwards

stepwise regression will lead to the same model if predictors are orthogonal.

Strategies have been proposed for using regression on orthogonal components to

select variables. For example, Jolliffe (1972, 1973) gives methods of selecting variables

following principal component regression. However, methods that give orthogonal

components do not, in general, lend themselves naturally to the task of variable

selection. The cos-max and cos-square transformations are exceptions, since these

retain a one-to-one correspondence between the original variables and the orthogonal

components.

The pitprop data reported by Jeffers (1967) contained a dependent variable, the

maximum compression stress of a prop (Y ), as well as the thirteen X-variables whose

correlation matrix is given in Table 1. Correlations between Y and the X-variables

are given in Jeffers (1967), Mardia et al. (1979, p. 178) and elsewhere. If Y is

regressed against the orthogonal components u1, . . . , u13 obtained from the cos-max

transformation, the percentages of the variance of Y accounted for by each of these
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components are 7.89 (7.00), 0.43 (0.26), 40.38 (41.15), 8.05 (7.92), 2.00 (2.34), 2.96

(3.12), 2.34 (1.82), 6.30 (6.51), 1.25 (1.35), 0.48 (0.41), 0.09 (0.05), 0.57 (0.67) and

0.34 (0.49). Corresponding figures for the cos-square transformation are given in

brackets and it can be seen that they are very similar. Jeffers (1967) and Mardia et

al. (1979, p.246) both performed a principal components regression for the pitprops

data. Jeffers selected five principal components which together accounted for 64.0%

of the variation in Y while Mardia et al. selected eight principal components which

together accounted for 72.8% of this variation. By comparison, with both the cos-max

and cos-square transformations the best five predictors from u1, . . . , u13 account for

66% of the variation in Y , which is slightly better than best five principal components,

while the best eight predictors account for 71%, which is slightly poorer than the best

eight principal components. Hence, there is disparity as to whether the constructed

orthogonal components or an equal number of principal components make better

predictors but, in any case, differences seem small. Regarding variable selection, X1,

X3, X4, X6, X8 are the variables that correspond to the best five components with

both the cos-max and cos-square transformations. These variables form a good set

of predictor variables; Mardia et al (1979, p. 178) give (X1, X3, X6, X8, X11) as the

optimal set of five predictors. However, differences are greater when the number of

predictor variables is increased from five to eight: three of the variables chosen by the

cos-max or cos-square transformations are not in the optimum set of eight predictor

variables. Hence, regression on orthogonal components can clearly give a different

perspective in variable selection problems.

Experimental design is another area where orthogonalization is often sought. Our

transformations should prove useful if a design is to be adjusted to make it orthogonal

and small adjustment is preferred. As an example, suppose n units are meant to

represent a population of m-dimensional objects. Then n objects might be sampled

from the population and taken as representative of it. However, if xi denotes the

vector of sample values for the ith dimension, then x1, . . . , xm are unlikely to be
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a set of orthogonal vectors. If orthogonality is required, then the cos-max or cos-

square transformation could be applied to x1, . . . , xm. After rescaling, the resulting

orthogonal components should be reasonably similar to x1, . . . , xm.

4.4. Multivariate Chebychev inequality

Suppose (Y1, . . . , Ym)′ is a random vector with mean 0m and nonsingular covariance

matrix Σ = (σij). Olkin & Pratt (1958) considered the problem of finding an upper

bound for P (|Yi| ≥ liσii, for some i), where l1, . . . , lm are specified positive constants.

Define Ω to be the positive definite matrix whose (i, j)th element is σij/(σiiσjjlilj).

Let T be the unique correlation matrix such that TΩ−1T is diagonal. Olkin & Pratt

showed that

P (|Yi| ≥ liσii, for some i) ≤ tr(T−1ΩT−1), (11)

which they referred to as a multivariate Chebychev inequality. In the univariate case,

where m = 1, this reduces to the usual Chebychev inequality, P (|Y1| ≥ l1σ11) ≤ 1/l21.

As noted by Olkin & Pratt (1958), T cannot be obtained from Ω by standard

matrix operations. Moreover, Olkin & Pratt did not suggest a method for calcu-

lating T and we did not find one in a search of the literature. Hence an efficient

method for determining T has long been needed. The algorithm for the cos-square

transformation provides one. If the transformation is applied with X ′X set equal to

Ω and 〈C,Q, Λ〉 is the matrix triple of the transformation, then Ω = SDS, where

S and D are defined by equations (5) and (6). As SΩ−1S is diagonal and S is a

correlation matrix, we have that T = S. Also, T−1ΩT−1 = D = C2, so the upper

bound given by (11) is simply tr(C2).

Suppose Ym+1, . . . , Ym+k are virtual duplicates of one or more of Y1, . . . , Ym. Then

the true upper bounds of P (|Yi| ≥ liσii, for some i; i = 1, . . . ,m) and P (|Yi| ≥ liσii,

for some i; i = 1, . . . , m + k) should be virtually equal. It is not obvious that

the bound of Olkin & Pratt has this property when the bound is expressed as

tr(T−1ΩT−1), since T becomes singular when the set (Y1, . . . , Ym+k) contains du-
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plicates. However, this property follows from Remark 7 on expressing the bound as

tr(C2).

5. Concluding comments

We have not directly addressed the questions of whether, or when, one of the

two transformations that we have constructed is to be preferred to the other. There

are applications in which the duplicate invariance property or the strong dilution

property are necessary or highly desirable, such as when choosing prior weights in

Bayesian model averaging, and then the cos-square transformation is appropriate.

Also, only the cos-square transformation yields the useful decomposition of V as

V = SDS, with D diagonal and S a correlation matrix. These results suggest

that the cos-square transformation has a richer set of qualities than the cos-max

transformation. However, there are applications in which the two transformations

yield identical results, such as in calculating variance inflation factors, or they will

typically give similar results, as when identifying the cause of large variance inflation

factors. Then the cos-max transformation might be preferred because it is simpler

and can be computed without recourse to an algorithm.

The method of assigning prior weights for Bayesian model averaging has been

examined further with encouraging results (Garthwaite & Mubwandarikwa, 2010).

Other methods proposed here that use the transformations also merit further work.

These methods concern varied areas of statistics, so the number of methods using

the transformations seems likely to grow.
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Appendix

Proof of Theorem 1. Put

B = Λ1/2Q′C−1AQ, (12)

where Λ1/2 denotes a diagonal matrix with non-negative diagonal elements and

Λ1/2Λ1/2 = Λ. Then B′B = Q′A′C−1QΛQ′C−1AQ = Q′A′X ′XAQ = Q′U ′UQ. Now

Q is an orthogonal matrix. Hence, B′B = Im if and only if U ′U = Im. Thus condi-

tion 2 is equivalent to B′B = Im. We seek to maximize
∑m

i=1 cix
′
iui = tr(CX ′U) =

tr(CX ′XA) = tr(CX ′XCC−1A) = tr(QΛQ′C−1A) = tr(ΛQ′C−1AQ) = tr(Λ1/2B).

Thus, tr(Λ1/2B) is to be maximized under the constraint B′B = Im. This has solu-

tion B = Im so, from equation (12), A = CQΛ−1/2Q′. ¤

Proof of Lemma 1. As C is diagonal and D = C2, we have that D is diagonal.

Now, in Steps 3 and 4 of our algorithm, the diagonal of Ci+1 is set equal to the

diagonal of C−1
i QiΛ

1/2
i Q′

i. Hence, the diagonals of C and C−1QΛ1/2Q′ are equal,

where C, Q and Λ are the values of Ci, Qi and Λi at convergence. Consequently

S = C−1QΛ1/2Q′C−1 is a correlation matrix as it is positive-definite and its diag-

onal elements all equal 1. Also SDS = (C−1QΛ1/2Q′C−1)C2(C−1QΛ1/2Q′C−1) =

C−1QΛQ′C−1 = X ′X. ¤

Proof of Theorem 2. Let V be any specified positive definite matrix and consider

the decomposition V = SDS. Impressive work by Olkin & Pratt (1958, Theorem

3.6) showed that D and S are determined uniquely by the the constraints that (i) D

is a diagonal matrix, and (ii) S is a correlation matrix. From Lemma 1, X ′X = SDS

where D = C2 and 〈C,Q, Λ〉 is the matrix triple for the cos-square transformation

of X. As all the elements of C are positive, it follows that C is unique. Then,

since QΛQ′ is the spectral decomposition of CX ′XC, the matrix triple 〈C, Q, Λ〉 is

also unique, apart from the ordering of eigenvectors and eigenvalues in Q and Λ. In
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addition, QΛ1/2Q′ is unique as it is the symmetric square-root of CX ′XC. It follows

that the transformation matrix, A, is also unique, as A = C(QΛ1/2Q′)−1. Hence

there is only one maximum to which the algorithm converges so that maximum is

necessarily a global maximum. ¤

Proof of Theorem 3. The vector xm will be duplicated. Partitioning X ′X to

separate xm from x1, . . . , xm−1, put

X ′X =


 R11 r

r′ rm


 ,

where R11 is a (m− 1)× (m− 1) matrix, r is a vector and rm is a scalar. Duplicates

xm+1, . . . , xm+k are added to x1, . . . , xm to form the matrix X∗ = (x1, . . . .xm+k).

Each duplicate differs from xm by only a small amount and we put xm+i = xm + αξi

for i = 1, . . . , k. We are interested in the transformation of x1, . . . , xm+k as α → 0.

Write (X∗)′X∗ as

(X∗)′X∗ =


 R11 R12 + O(α)

R′
12 + O(α) R22 + O(α)


 , (13)

where each column of R12 equals r and each element of R22 is rm. We assume (X∗)′X∗

is a positive-definite matrix for any α > 0.

Let 〈C∗, Q∗, Λ∗〉 denote the matrix triple at convergence when the algorithm for

the transformation is applied to x1, . . . , xm+k. We assume that the diagonal of Λ∗

contains the eigenvalues in descending order of size. C∗, Q∗ and Λ∗ are (m + k) ×
(m + k) matrices that depend on α. Put

C∗ =


 C

(m−1)×(m−1)
(1) 0(m−1)×(k+1)

0(k+1)×(m−1) C
(k+1)×(k+1)
(2)




and

Q∗ =


 Q

(m−1)×m
11 Q

(m−1)×k
12

Q
(k+1)×m
21 Q

(k+1)×k
22


 .
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Since, xm+i = xm + O(α) for i = 1, . . . , k, we can put

Λ∗ =


 Λm×m

(1) 0m×k

0k×m Λk×k
(2)


 .

where each diagonal element Λ(2) is of order O(α). Λ∗ and C∗ are diagonal matri-

ces. Let c0, . . . , ck denote the diagonal elements of C(2). The theorem is proved via

Propositions 1–6.

Proposition 1. Choose q = (q1, . . . , qm)′ so that the first row of Q21 is c0q.

Then, as α → 0, the (i + 1)th row of Q21 → ciq
′ for i = 0, . . . , k.

Proof. For j = 1, . . . , m, let sj and tj be the jth columns of Q11 and Q21,

respectively. We have that C∗(X∗)′X∗C∗(s′, t′)′ = (λjs
′
j, λjt

′
j)
′, where λj is the jth

eigenvalue of Λ∗. Hence, as α → 0,

C(2)R
′
12C(1)sj + C(2)R

′
22C(2)tj → λjtj. (14)

Now the rows of R′
12 are identical to each other, as are those of R′

22. Hence, elements

in the vector R′
12C(1)sj are identical and so are those in R′

22C(2)tj. Consequently, if

tj = (tj0, . . . , tjk)
′, then tji/tj0 → ci/c0 for i = 0, . . . , k. As ci/c0 does not depend on

which column of Q21 was chosen as tj, Proposition 1 follows. ¤

Define

C =


 C(1) 0m−1

0′m−1 cm


 , and Q =


 Q11

cmq′


 , (15)

where cm = (
∑k

i=0 c2
i )

1/2.

Proposition 2. As α → 0, the spectral decomposition of CX ′XC → Q Λ(1)Q
′,

where X = (x1, . . . , xm).

Proof. Let α → 0 and let c = (c0, . . . , ck)
′. From Proposition 1, if tj is the

jth column of Q21, then tj ≈ qjc and the (i + 1)th row of equation (14) gives

cirC(1)sj + cirmc′tj ≈ λjciqj. Now c′tj ≈ c2
mqj, so

rC(1)sj + rmc2
mqj → λjqj. (16)



26

From C∗(X∗)′X∗C∗(s′, t′)′ = (λjs
′
j, λjt

′
j)
′, we also have that C(1)R11C(1)sj+C(1)R12C(2)tj →

λjsj. As R12C(2)tj = r(c′tj) ≈ r(c2
mqj),

C(1)R11C(1)sj + C(1)rc
2
mqj → λjtj. (17)

From equations (16) and (17), as α → 0,


 C(1) 0m−1

0′m−1 cm





 R11 r

r′ rm





 C(1) 0m−1

0′m−1 cm





 sj

cmqj


 →


 λjsj

λjcmqj


 .

Using equation (13), as α → 0, λj is an eigenvalue of CX ′XC and (s′j, cmqj)
′ is

its corresponding eigenvector. Now, (s′j, cmqj)(s
′
j, cmqj)

′ = s′jsj + c2
mq2

j = s′jsj +

(qjc
′)(cqj) ≈ s′jsj + t′jtj. As (s′j, t

′
j)
′ is the jth column of the orthogonal matrix Q∗,

it follows that (s′j, cmqj)(s
′
j, cmqj)

′ ≈ 1. Hence the jth column of Q [i.e. (s′j, cmqj)] is

a standardized eigenvector as α → 0. ¤

Proposition 3. As α → 0, diagonal(C) → diagonal(C−1QΛ
1/2
(1) Q

′).

Proof. As 〈C∗, Q∗, Λ∗〉 is the matrix triple for the transformation of x1, . . . , xm+k,

diagonal(C∗C∗) = diagonal{Q∗(Λ∗)1/2(Q∗)′}. Hence as α → 0,

diagonal


 C(1)C(1) 0(m−1)×(k+1)

0(k+1)×(m−1) C(2)C(2)


 → diagonal


 Q11Λ

1/2
(1) Q

′
11 Q11Λ

1/2
(1) Q

′
21

Q21Λ
1/2
(1) Q

′
11 Q21Λ

1/2
(1) Q

′
21


 ,

so

diagonal(C(1)C(1)) → diagonal(Q11Λ
1/2
(1) Q

′
11). (18)

Also, tr(C(2)C(2)) → tr(Q21Λ
1/2
(1) Q

′
21). Now tr(C(2)C(2)) =

∑k
i=0c

2
i = c2

m and tr(Q21Λ
1/2
(1) Q

′
21) ≈

∑k
i=0ciq

′Λ1/2
(1) qci = (

∑k
i=0c

2
i )q

′Λ1/2
(1) q = c2

mq′Λ1/2
(1) q. Thus, as α → 0,

c2
m → c2

mq′Λ1/2
(1) q. (19)

From equations (18) and (19), as α → 0,

diagonal


 C(1)C(1) 0m−1

0′m−1 c2
m


 → diagonal


 Q11Λ

1/2
(1) Q

′
11 cmQ11Λ

1/2
(1) q

cmq′Λ1/2
(1) Q

′
11 c2

mq′Λ1/2
(1) q


 .
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¤

There is a unique set of matrices that satisfy the conditions to be the matrix triple

for the transformation of x1, . . . , xm. Propositions 2 and 3 show that 〈C, Q, Λ(1)〉 is

that matrix triple as α → 0.

Proposition 4. Let θ = q′Λ1/2
(1) q. Then the (m− 1)× (m− 1) matrix Q11(Λ

1/2
(1) −

Λ
1/2
(1) qq

′Λ1/2
(1) /θ)Q

′
11 is of full rank.

Proof. Let Γ = Λ
1/2
(1) − Λ

1/2
(1) qq

′Λ1/2
(1) /θ. As Λ

1/2
(1) is of rank m and Λ

1/2
(1) qq

′Λ1/2
(1) is of

rank 1, the rank of Γ is at least m−1. Hence, as Γ is an m×m matrix, if g1 and g2 are

two non-zero vectors such that g′1Γ = g′2Γ = 0′m, then g1 must be proportional to g2.

Now q′Γ = q′Λ1/2
(1) −q′Λ1/2

(1) = 0′m, so for any vector g, if g′Q11Γ = 0′m, then g′Q11 = 0′m

or g′Q11 = bq for some non-zero constant b. Since (Q′
11, q)

′ is an orthogonal matrix,

(g′, b)(Q′
11, q)

′ 6= 0′m. Hence, if g′Q11Γ = 0′m, then g′Q11 = 0′m. But if g′Q11 = 0′m,

then (g′, 0)(Q′
11, q)

′ = 0′m, implying g = 0m−1. Hence, if g′Q11Γ = 0′m, then g = 0m−1

and Q11Γ is of rank m − 1. Since Q11Γq = 0m−1, a similar argument shows that

Q11ΓQ′
11 is of rank m− 1. ¤

Proposition 5. If u1, . . . , um and u∗1, . . . , u
∗
m+k denote the components resulting

from the cos-square transformation when it is applied to 〈x1, . . . , xm〉 and 〈x1, . . . , xm+k〉,
respectively, then ui → u∗i for i = 1, . . . , m− 1, as xm+j → xm for j = 1, . . . , k.

Proof. Put X(1) = (x1, . . . , xm−1), X(2) = (xm, . . . , xm+k), U∗
(1) = (u∗1, . . . , u

∗
m−1),

U∗
(2) = (u∗m, . . . , u∗m+k) and U(1) = (u1, . . . , um−1). From Theorem 1, (U∗

(1), U
∗
(2)) =

(X(1), X(2))A
∗, where A∗ = CQ∗(Λ∗)−1/2(Q∗)′. Hence

(X(1), X(2)) = (U∗
(1), U

∗
(2))Q

∗(Λ∗)−1/2(Q∗)′(C∗)−1. (20)

Let α → 0. Then

Q∗(Λ∗)1/2(Q∗)′(C∗)−1 ≈

 Q11Λ

1/2
(1) Q

′
11C

−1
(1) Q11Λ

1/2
(1) Q

′
21C

−1
(2)

Q21Λ
1/2
(1) Q

′
11C

−1
(1) Q21Λ

1/2
(1) Q

′
21C

−1
(2)


 , (21)
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and each column of Q′
21C

−1
(2) → q. Also, each column of X(2) → xm. Hence, from

(20) and (21),

xm ≈ U∗
(1)Q11Λ

1/2
(1) q + U∗

(2)Q21Λ
1/2
(1) q (22)

and

X(1) ≈ U∗
(1)Q11Λ

1/2
(1) Q

′
11C

−1
(1) + U∗

(2)Q21Λ
1/2
(1) Q

′
11C

−1
(1) . (23)

From Proposition 1, U∗
(2)Q21 ≈ U∗

(2)(c0, . . . , ck)
′q′. Hence, from (22), U∗

(2)(c0, . . . , ck)
′ ≈

(xm − U∗
(1)Q11Λ

1/2
(1) q)/θ where, as in Proposition 4, θ = q′Λ1/2

(1) q. Hence, from (23),

X(1) ≈ U∗
(1)Q11Λ

1/2
(1) Q

′
11C

−1
(1) + (xm − U∗

(1)Q11Λ
1/2
(1) q)q

′Λ1/2
(1) Q

′
11C

−1
(1)/θ

= U∗
(1)Q11(Λ

1/2
(1) − Λ

1/2
(1) qq

′Λ1/2
(1) /θ)Q

′
11C

−1
(1) + xmq′Λ1/2

(1) Q
′
11C

−1
(1)/θ. (24)

Similar computations from the equation (U(1), um) = (X(1), xm)A, where A = CQΛ
−1/2
(1) Q′,

give

xm ≈ U(1)Q11Λ
1/2
(1) q + cmumθ (25)

and

X(1) ≈ U(1)Q11Λ
1/2
(1) Q

′
11C

−1
(1) + cmumq′Λ1/2

(1) Q
′
11C

−1
(1) . (26)

Using (25) to substitute for cmum in (26),

X(1) ≈ U(1)Q11(Λ
1/2
(1) − Λ

1/2
(1) qq

′Λ1/2
(1) /θ)Q

′
11C

−1
(1) + xmq′Λ1/2

(1) Q11C
−1
(1)/θ. (27)

From (24) and (27),

0n×(m−1) ≈ (U∗
(1) − U(1))Q11(Λ

1/2
(1) − Λ

1/2
(1) qq

′Λ1/2
(1) /θ)Q

′
11C

−1
(1) .

From Proposition 4, Q11(Λ
1/2
(1) − Λ

1/2
(1) qq

′Λ1/2
(1) /θ)Q

′
11C

−1
(1) is of full rank. Hence U∗

(1) −
U(1) ≈ 0n×(m−1). ¤

Proposition 6. As α → 0, Q12Λ
−1/2
(2) Q′

12 → 0(m−1)×(m−1).

Proof. Put Z = (xm, ξ1, . . . , ξk) and

Hα =


 1 1′k

0 αIk


 .



29

Then Hα is non-singular and X(2) = ZHα. As X∗ = (X(1), X(2)),

[(X∗)′X∗]−1 =


 X ′

(1)X(1) X ′
(1)ZHα

H ′
αZ ′X(1) H ′

αZ ′ZHα



−1

.

Let Γ11 denote the top-left m×m sub-matrix of [(X∗)′X∗]−1. Then Γ11 = (X ′
(1)X(1)−

X ′
(1)ZHα(H ′

αZ ′ZHα)−1H ′
αZ ′X(1))

−1 = (X ′
(1)X(1) − X ′

(1)Z(Z ′Z)−1Z ′X(1))
−1. Hence

Γ11 does not depend on α. Also, [(X∗)′X∗]−1 = C∗Q∗Λ∗(Q∗)′C∗, so Γ11 = C(1)[Q11Λ
−1
(1)Q

′
11+

Q12Λ
−1
(2)Q

′
12]C(1). As Γ11 does not depend on α and both C(1) and Q11Λ

−1
(1)Q

′
11 are fi-

nite, Q12Λ
−1
(2)Q

′
12 is finite for all α. If qij denotes the (i, j) element of Q∗, the ith

diagonal element of Q12Λ
−1
(2)Q

′
12 is

k∑
j=1

q2
i(m+j)/λm+j (28)

for i = 1, . . . , (m− 1). Each term in the summation in (28) is positive, so each term

is finite as their sum is finite. Since λm+j → 0 as α → 0,

q2
i(m+j)/λ

1/2
m+j → 0 (29)

as α → 0 for i = 1, . . . , (m− 1); j = 1, . . . , k. The (h, i) element of Q12Λ
−1/2
(2) Q′

12 is

k∑
j=1

qh(m+j)qi(m+j)/λ
1/2
m+j =

k∑
j=1

[(q2
h(m+j)/λ

1/2
m+j)(q

2
i(m+j)/λ

1/2
m+j)]

1/2.

Hence, from (29), Q12Λ
−1/2
(2) Q′

12 → 0(m−1)×(m−1) as α → 0. ¤

Proposition 5 is part (i) of Theorem 3. By definition, cm = (
∑k

i=0c
2
i )

1/2 so
∑m+k

i=m (x′iu
∗
i )

2 → (x′mum)2. Consequently,
∑m+k

i=1 (x′iu
∗
i )

2 → ∑m
i=1(x

′
iui)

2, giving (ii).

As A = CQΛ
−1/2
(1) Q′. it follows from equation (14) that A11 = C(1)Q11Λ

−1/2
(1) Q′

11.

Also, A∗ = C∗Q∗(Λ∗)−1/2(Q∗)′ so A∗
11 = C(1)(Q11Λ

−1/2
(1) Q′

11 + Q12Λ
−1/2
(2) Q′

12). Thus,

from Proposition 6, A∗
11 → A11 as α → 0. This gives part (iii), completing the proof

of Theorem 3. ¤

Proof of Corollary 3.1. In the notation of Theorem 3, let pi and p∗i denote the

prior probabilities that the cos-square weighting scheme gives to Mi when the set
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of vectors is x1, . . . , xm and xm+1, . . . , xm+k, respectively. Then, pi = c2
i /

∑m
j=1c

2
j =

(x′iui)
2/

∑m
j=1(x

′
juj)

2 for j = 1, . . . m. Similarly, p∗i = (x′iu
∗
i )

2/
∑m+k

j=1 (x′juj)
2 for j =

1, . . . m + k. From Theorem 3, p∗i → pi (i = 1, . . . , m − 1) as xm+j → xm for

j = 1, . . . , k. ¤
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